

Mission Challenges

Quantify how the thickness of the land-ice and sea-ice is changing

Context

Quality-Analysis Evolutions Conclusion

Instrument and Geographical Mask

Ku-band pulse-limited radar altimeter operating in 3 Modes

Land ice and

Ocean: LRM LRM

Sea-Ice

Regions: SAR

Glacier + Ice

Margins:

SARin SARin

Quality-Analysis Evolutions Conclusion

CryoSat SAR Acquisitions over interior Land ice

In coordination with CNES, ESA's CryoSat mission carried out **SAR acquisitions over Antarctica** to support the development of the S-3 Processing Algorithms over land ice

Fine Space Resolution

- SAR mode improves along track resolution with improvement in capacity to detect floes and leads
- SARIn mode improves across track resolution, designed for rugged terrain

Optimized Orbit for Polar Science

- 92 degree orbit inclination to survey polar zones. Increased coverage = 4.6 M km sq
- 369 day repeat with 30 day sub cycle provides dense across track sampling and captures temporal change

Context

Quality-Analysis Evolutions Conclusion

CryoSat Processors

Data are processed both over ocean and ice surfaces with **2 independent** processors

Context

Quality-Analysis Evolutions Conclusion

Ocean product Quality: Nominal but trend/bias to be investigated

Ice product Quality: General improvements w.r.t. Baseline B over sea & land ice (but few issues to be fixed)

ECMWF Model changes (8 March 2016): Expected Improvements **but** spatial/temporal mm offsets on derived parameters (WTC, DTC etc.)

More informations on the CryoSat ESA Web news and associated ECMWF Quality Report

Context Quality-Analysis

Evolutions

Conclusion

Driven by new user requirements & improved GS capacity

Data disseminated to users increases from 3GB/d to ~ 50GB/d

New Baselines & NetCDF for 2017

Context Quality-Analysis

Evolutions

Conclusion

Baseline C COP: A Major Upgrade

Partially Based on R&D outcomes (CP40) & Up-to-date Geophysical Corrections

Context Quality-Analysis

Evolutions

Conclusion

Ice Baseline D

Preparatory Phase still requiring CryoSat User feedback and Recommendations

asap

Release : 2017-Q3

Repro. campaign: 2018-Q1

New Form

New Product

Improved Processing and corrections

NetCDF

L1B-S Stack

Product

- > 20 Evolutions and bug fixing planned
- > 10 Evolutions currently undergoing R&D

Ice Baseline D – Examples of Planned evolutions

- Multilook Without Zero (samples out of acquisition window)
- **Pseudo LRM Processing from SARin** (QWG#6 recommendation): To prepare mode-mask switch to SARin over land-ice area and ensure time-series continuity

New Baseline-D approach: exclude the zero values

Good continuity at LRM / PLRM transitions

Context Quality-Analysis Evolutions Conclusion

Ice Baseline D – Examples of Planned evolutions

- Use of the most updated DEM (TBD) for LRM surface slope corrections & SARin processing
- Freeboard in SARin sea-ice areas: compute missing values for sea-ice areas over the Arctic Ocean **and** all margins in Polar regions ("Coastal" Freeboard)

Example of recent Elevation & slope Model (Helm et al, 2014)

Area previously operating in SARIn with no freeboard

Context Quality-Analysis Evolutions Conclusion

Ice Baseline D/E – Examples of Potential evolutions to be assessed

- High resolution Polar Tide Model and MSS
- Doppler ambiguity masking, stack weighting or antenna pattern compensation
- Surface Type detection / Waveform classifications
- **Snow Depth correction** dedicated to sea-ice areas (Ka vs Ku ? *In situ* ? Models ?)
- Additional sea-ice "Physical" retracker (i.e. Samosa)
- Additional land ice retracker following CryoVal project recommendations

Additional suggestions / recommendations from you would be welcomed

Outlook for the future:

- Better characterisation of snow load and Antarctica sea-ice
- Stimulate R&D for new Cryosat sea-ice products and operational applications (assimilation into numerical modeling)
- New exploitation activities focusing of SARIN interferometric measurements both over land, ocean and coastal zones

CryoSat Swath processing

CryoSat Science Meeting and geodetic mission

Copyright © European Space Agency. All rights reserved.

cryosat science meeting and geodetic missions 20-24 March 2017 | Banff, Alberta | Canada

European Space Agency

List of events

Home • Venue •

North-American CryoSat Science Meeting and Geodetic Missions Workshop

> 20-24 March 2017 Banff, Alberta, Canada

www.cryosat2017.org

End of June: Abstract submission opened

CryoSat Special Issue in Advances Space Research

Advances in Space Research
CryoSat Special Issue
Spring 2017