Deep Learning applied to cryosphere Earth Observation data

Nicolas LONGEPE, Iris DE GELIS (CLS)

Contact: nlongepe@groupcls.com

Space Observation, Environment and Climate , CLS Atelier Glaciologie/Altimétrie, 25/06/2019

General context

Boom of AI in remote sensing !

- Phi-Lab at ESA organizing PhiWeek event, see LPS Milan

Some AI startups

- Annotation platform: Biggle, Scale, DataVlab (ESA BIC nord: nouvelle startup 2019)
- Optical images: EarthCube (France)
- Analytics with images SAR (descarteslab, URSA),...

Context of data analytics platform (DIAS, PEPS...)

Recent interest of community

- 1st workshop Leveraging AI in the Exploitation of Satellite Earth Observations & Numerical Weather Prediction by NOAA
- Ice charting working group (IICWG) with recent discussion on "big data and Machine Learning"
- Journées thématique IA/ocean/climate/atmosphere
- ..

So far limited studies for SAR-based cryosphere applications

- Kaggle by C-Core for iceberg versus vessel detection from SAR images
- SAR-based sea ice classification: one group from Univ Waterloo Canada
- Oceanography: nothing, except our IFREMER/IMT-A/CLS initiative !

What about altimetry community ?

Deep Learning technics ?

Classification/segmentation of images and Machine Learning ?

-> Need for handcrafting features

ML applicable to oceanic SAR images ?

- Intrinsic variability for a given phenomenon
- Depending on metocean and observation conditions

Deep Learning -> data-based feature extraction + classification DL applicable to oceanic SAR images?

Need for training database with annotated/labelled SAR images

Computing Power (GPU...) + Frameworks by Google/Facebook/... + Crowdsoucing capabilities with Internet (ImageNet) + Data availability => Boom of Deep Learning

Challenge classification ILSVRC (ImageNet), 1001 classes, 1M+ images Deep Convolutional Neural Network (CNN)

Architecture of the Inception v3

Used AI - Deep Learning technics

Image classification CNN

Semantic segmentation FCN

Time series analysis RNN / LSTM

Used AI - Deep Learning technics

Image classification CNN

BCLS

Context for ocean SAR images

Overwhelming amount of data from Copernicus satellites:

• Every day representing a daily average of 3,45 TB of S1a/S1b data published

A significant amount covers ocean surface, used for a wide range of applications involving public and private stakeholders.

- Few operational services from SAR: sea ice, oil spill, EMSA/Frontex...
- Few other operational products: wind field (for EMR), waves (see CMEMS),...

Do we really exploit the full imaging capabilities of these C-band SAR data acquired over the ocean's surface?

To name a few, atmospheric fronts, oceanic fronts, rain cells, micro convective cells, internal waves, gravity waves, biologic slicks, upwelling or wind streaks can be observed !

being totally discarded in the SAR images.

Short/mid term objectives: automatically and systematically tagged all the observed phenomena

Opening many potential perspectives: Sciences, operational services, space data

Training database

General results

Training/cross-validation/testing: 75/20/5%

Fine-tuned Inception-V3 Model: 97.5 % accuracy on cross validation(CV) 97.1% on test set.

Architecture of the Inception v3

fremer

8

"Fine-tuned": Starting weights of the model comes from training on the ImageNet dataset

Assessment with independent 10k database: interest for multi-labelling, establishment of classification confidence

Convolution AvgPool

Fully connected

MaxPoo

Dropout

Al-based automatic detection of metocean features on WM imagettes

80

Sea Ice in January 2016

80

Atmospheric Front in January 2016

Rain Cell in January 2016

Micro Convective Cell in January 2016

Used AI - Deep Learning technics

Semantic segmentation FCN

Semantic segmentation (Objective)

• Estimation of SIC in Arctic from SAR image

Sentinel-1 (S1A/S1B) : SAR

LS

- HH et HV
- 2016 2017 2018
- 1528 EW images
 --> 400 km par 400 km

¹¹ Architecture - FCN – UNet [1]

2015, pp. 234-241.

Prediction by patches

Used AI - Deep Learning technics

Time series analysis RNN / LSTM

label:pat on back of other person predict: --

Database AltiKa with "ground truth" provided by S-1 lead data

Collocation between AltiKa/SARAL tracks and S-1 data during winter 2015-2016 for AltiKa

About 100 images selected with consolidated sea ice (SIC > 50%)

About 1h time lag at best

5

Database AltiKa with ground truth provided by S-1

For each 40Hz WF: Compute distance from nadir to closest lead If distance below a given threshold, consider "lead" as ground truth, otherwise "not lead"

Build RNN / LSTM (experimental)

Some very preliminary results

Some very preliminary results

CLS

Perspectives:

0.6 0.8 0.6 0.8 1:lead +/-3hrs

Consolidate the approach !!

Build DL model to estimate distance of leads from nadir (reprocess data with no AGC & no tracker accounted for)