Jason-2 validation and cross calibration activities

Contract No 60453/00 - lot2.C

Reference : CLS.DOS/NT/10-302
Nomenclature : SALP-RP-MA-EA-21895-CLS
Issue : 1rev 1
Date : July 20, 2011
Chronology Issues:

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Reason for change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1rev0</td>
<td>January 27, 2011</td>
<td>Creation</td>
</tr>
<tr>
<td>1rev1</td>
<td>July, 20, 2011</td>
<td>Revision after comments from N. Picot</td>
</tr>
</tbody>
</table>

People involved in this issue:

<table>
<thead>
<tr>
<th>AUTHORS</th>
<th>COMPANY</th>
<th>DATE</th>
<th>INITIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written by:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Philipps</td>
<td>CLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. Ablain</td>
<td>CLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Checked by:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Dalessio</td>
<td>CLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved by:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP. Dumont</td>
<td>CLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. Ablain</td>
<td>CLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application authorised by:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Index Sheet:

Context:

Keywords:

Hyperlink:

Distribution:

<table>
<thead>
<tr>
<th>Company</th>
<th>Means of distribution</th>
<th>Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLS/DOS</td>
<td>electronic copy</td>
<td>G.DIBARBOURE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V.RÓSMORDUC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J.DORANDEU</td>
</tr>
<tr>
<td>CNES</td>
<td>electronic copy</td>
<td>thierry.guinle@cnes.fr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nicolas.picot@cnes.fr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aqgp.rs@cnes.fr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dominique.chermain@cnes.fr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>delphine.vergnoux@cnes.fr</td>
</tr>
</tbody>
</table>
List of tables and figures

List of Tables

1. Planned events .. 4
2. Missing pass status ... 6
3. Edited measurement status 7
4. Models and standards adopted for the Jason-2 products. Taken from [23] 9
5. Editing criteria .. 13
6. Used orbits ... 63
7. Overview of orbit types and cycle numbers used. .. 66

List of Figures

1. Percentage of missing measurements over ocean and land for JA2 and JA1 10
2. Map of percentage of available measurements over land for Jason-2 on cycle 79 (left) and for Jason-1 on cycle 320 (right) .. 11
3. Cycle per cycle percentage of missing measurements over ocean (top left), without anomalies (top right), without anomalies and with geographical selections (bottom) .. 12
4. Cycle per cycle percentage of eliminated measurements during selection of ocean/lake measurements. ... 14
5. Percentage of edited measurements by ice flag criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79). 15
6. Cycle per cycle percentage of edited measurements by threshold criteria 16
7. Percentage of edited measurements by 20-Hz measurements number criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79). .. 17
8. Percentage of edited measurements by 20-Hz measurements standard deviation criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79). .. 18
9. Percentage of edited measurements by SWH criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79). 18
10. Percentage of edited measurements by Sigma0 criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79). 19
11. Percentage of edited measurements by 20 Hz Sigma0 standard deviation criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79). .. 20
12. Percentage of edited measurements by radiometer wet troposphere criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79) 20
13. Percentage of edited measurements by dual frequency ionosphere criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79) 21
14. Percentage of edited measurements by square off-nadir angle criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79) 21
15. Cycle per cycle percentage of edited measurements by sea state bias criterion (left). Right: Map of percentage of edited measurements by sea state bias criterion over a one year period (cycles 43 to 79) .. 22
16. Percentage of edited measurements by altimeter wind speed criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79) 23
Percentage of edited measurements by ocean tide criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79).

Percentage of edited measurements by sea surface height criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79).

Percentage of edited measurements by sea level anomaly criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79).

Map of 20 Hz C-band MQE for Jason-2 cycle 10.

Cyclic monitoring of number of elementary 20 Hz range measurements for Jason-1 and Jason-2 for Ku-band (left) and C-band (right).

Daily monitoring of mean and standard deviation of Jason-1 - Jason-2 differences for number of elementary 20 Hz Ku-band range measurements (left) and map showing mean of Jason-1 - Jason-2 differences over cycles 1 to 20.

Daily monitoring of mean and standard deviation of Jason-1 - Jason-2 differences for number of elementary 20 Hz C-band range measurements (left) and map showing mean of Jason-1 - Jason-2 differences over cycles 1 to 20.

Cyclic monitoring of rms of elementary 20 Hz range measurements for Jason-1 and Jason-2 for Ku-band (left) and C-band (right).

Daily monitoring of mean and standard deviation of Jason-1 - Jason-2 differences for the rms of elementary 20 Hz Ku-band range measurements (left) and map showing mean of Jason-1 - Jason-2 differences over cycles 1 to 20 (right).

Daily monitoring of mean and standard deviation of Jason-1 - Jason-2 differences for rms of elementary 20 Hz C-band range measurements (left) and map showing mean of Jason-1 - Jason-2 differences over cycles 1 to 20 (right).

Square of the off-nadir angle deduced from waveforms (deg^2) for Jason-1 and Jason-2: Daily monitoring (left), histograms for Jason-2 cycle 10 (Jason-1 cycle 249).

Histograms of Jason-2 mispointing after retracking with different antenna beamwidth (from [38]): 1.26 (blue), 1.28 (light blue), 1.30 (dark blue).

Cyclic monitoring of Sigma0 for Jason-1 and Jason-2 for Ku-band (left) and C-band (right) and Jason-1 - Jason-2 differences (bottom).

Daily monitoring of mean and standard deviation of Jason-1 - Jason-2 differences for Ku-band Sigma0 (left) and map showing mean of Jason-1 - Jason-2 differences over cycles 1 to 20.

Daily monitoring of mean and standard deviation of Jason-1 - Jason-2 differences for C-band Sigma0 (left) and map showing mean of Jason-1 - Jason-2 differences over cycles 1 to 20.

Cyclic monitoring of SWH for Jason-1 and Jason-2 for Ku-band (left) and C-band (right) and Jason-1 - Jason-2 differences (bottom).

Daily monitoring of mean and standard deviation of Jason-1 - Jason-2 differences for Ku-band SWH (left) and map showing mean of Jason-1 - Jason-2 differences over cycles 1 to 20.

Daily monitoring of mean and standard deviation of Jason-1 - Jason-2 differences for C-band SWH (left) and map showing mean of Jason-1 - Jason-2 differences over cycles 1 to 20.

Daily monitoring of mean and standard deviation of Jason-1 - Jason-2 differences for dual-frequency ionospheric correction (left) and map showing mean of Jason-1 - Jason-2 differences over cycles 1 to 20.

Cyclic monitoring of dual-frequency ionosphere for Jason-1 and Jason-2 (right) and Jason-1 - Jason-2 differences (left).

38 Daily monitoring of mean and standard deviation (left) of Jason-1 - Jason-2 radiometer wet troposphere correction. Map showing mean of Jason-1 - Jason-2 differences over cycles 1 to 20.

39 Daily monitoring of radiometer and ECMWF model wet troposphere correction differences for Jason-1 (blue), Jason-2 (red) and Envisat (green) limited to 66° latitude. Vertical gray lines correspond to yaw maneuvers on Jason-2. Right: daily monitoring for Jason-2 GDRs (red) and IGDRs (pink). Vertical green lines correspond to ECMWF model version changes, black lines correspond to AMR calibration coefficients changes on GDR products also impacting IGDR product (but latter).

40 Daily monitoring of mean and standard deviation (left) of Jason-1 - Jason-2 altimeter wind speed. Map showing mean of Jason-1 - Jason-2 differences over cycles 1 to 20.

41 Histogram of altimeter (Jason-1 in blue, Jason-2 in red) and model wind speed (light blue) for a 10 day period.

42 Monitoring of mean of SSH crossover differences for Jason-2 and Jason-1 using official POE orbits from GDR.

43 Map of mean of SSH crossovers differences for Jason-2 cycle 1 to 79 using GDR orbit (left) and for cycles 1 to 53 using GPS orbit JPL09A (right).

44 Map of mean of SSH crossovers differences between Jason-2 and Jason-1 for Jason-2 cycle 1 to 72 using GDR orbit (left) and between Jason-2 and Envisat for Jason-2 cycles 7 to 72 using GDR-C orbit for both missions (right).

45 Cycle by cycle standard deviation of SSH crossover differences for Jason-2 and Jason-1 (left) and superposed with solar radio flux (right) over the Jason-2 period. Only data with abs(latitude) < 50°, bathymetry < -1000m and low oceanic variability were selected.

46 Monitoring of pseudo time-tag bias estimated cycle by cycle from GDR products for Jason-2 and Jason-1.

47 Cycle by cycle monitoring of SSH bias between Jason-1 and Jason-2 before and after Jason-1 ground-track change (black curve and dots) and SSH bias without applying corrections in SSH calculation for both missions only during the formation flight phase (gray curve).

48 Maps of SLA mean differences between Jason-1 and Jason-2 during formation flight phase (cycles 1 to 20) using official POE orbit from GDRs (left) and GSFC09 orbit (right).

49 Cycle by cycle monitoring of SLA standard deviation for Jason-1 and Jason-2.

50 MSL evolution calculated from T/P, Jason-1 and using Jason-2 data from October 2008.

51 Global MSL trend evolution calculated for Jason-2 and Jason-1 over Jason-2 period (left). MSL trend evolution when separating in ascending and descending passes (right). GIA correction is not applied.

52 Maps of regional MSL slopes for Jason-2 and Jason-1, seasonal signal removed.

53 Example of low signal tracking anomaly for pass 134, Jason-2 cycle 0. Several parameters are shown: AGC (top left), apparent squared mispointing (top right), Sigma0 (bottom left), and SWH (bottom right). Period of anomaly colored.

54 Percentage of available measurements over ocean for Jason-2 cycle 15 (left) and 18 (right).
55 Percentage of available measurements over land for Jason-2 cycle 15 (left) and 18 (right).
56 Percentage difference of available measurements over land for Jason-2. Cycle 018 (after correction) - cycle 015 (before correction).
57 Map showing C-Band MQE for Jason-2 cycle 10.
58 Histogram of Jason-2 MQE for Ku-band (left) and C-band (right).
59 Map showing mean of JA1-JA2 residus difference of Ku-band - C-band range difference. Left: original JA2 product, right recomputed JA2.
60 Map showing mean of JA1-JA2 residus difference of number of elementary C-band range measurements. Left: original JA2 product, right recomputed JA2.
61 Map showing mean of JA1-JA2 residus difference of C-band significant wave height. Left: original JA2 product, right recomputed JA2.
62 Map of 34 GHz brightness temperature for Jason-2 cycle 19 showing location of passes 24 and 119 (passes where incidents started).
63 34 GHz brightness temperature for Jason-2 in red and black (and Jason-1 in blue) cycle 19 along passes 24 (left) and 119 (right).
64 Map of 34 GHz brightness temperature (left) and map of ice flag (right) in Hudson bay for Jason-2 cycle 19.
65 Monitoring of along-track radiometer - ECMWF model wet troposphere correction (top) for passes 102 (left) and 172 (right). Monitoring of along-track radiometer and ECMWF model wet troposphere correction (bottom).
66 Maps of 3h precipitation (TRMM and Other Data Precipitation Data Set 3B42) with radiometer wet troposphere path delay superposed for 12/01/2010 09h (left) and 15/01/2010 03h (right).
67 Map of mean of SSH crossovers differences for Jason-2 using POE from GDR product (top left), CNES GPS only standard dynamic POE (top right), CNES GPS only reduced dynamic POE (middle left), JPL GPS only reduced dynamic POE (middle right), GSFC Laser/Doris POE (bottom left), CNES Doris POE (bottom right). Data cover Jason-2 cycles 1 to 40, except for CNES GPS reduced dynamic POE, which covers cycles 1 to 32 and CNES DORIS only orbit, which covers cycles 1 to 20.
68 Cyclic monitoring of mean SSH differences at crossovers for Jason-2 using different POEs (top). Cyclic monitoring of differences of SSH variances at crossovers for Jason-2 using different POEs (bottom) (variance(SSH using test POE) - variance (SSH using GDR POE)).
69 Mean of orbit differences (ITRF2008 - ITRF 2005) for Jason-1 (left) and Jason-2 (right).
70 Cyclic monitoring of SLA variance differences (ITRF2008 - ITRF 2005) for Jason-1 (left) and Jason-2 (right). Only data with abs(latitude) < 50°, bathymetry < -1000m and low oceanic variability were selected.
71 Cyclic monitoring of SSH variance differences (ITRF2005 - ITRF 2008) at crossover points for Jason-1 (left) and Jason-2 (right). Only data with abs(latitude) < 50°, bathymetry < -1000m and low oceanic variablity were selected.
72 Southern and northern hemisphere MSL trend using orbits based on ITRF2005 and ITRF2008 for Jason-1 (left) and Jason-2 (right). Annual and semi-annual signals are adjusted from combined Topex/Poseidon and Jason-1 time series.
73 Poster presented at OSTST meeting, Lisbon 2010.
74 Poster presented at OSTST meeting, Lisbon 2010.
Applicable documents / reference documents
Contents

1. Introduction 1

2. Processing status 2
 2.1. Processing ... 2
 2.2. CAL/VAL status .. 2
 2.2.1. List of events ... 2
 2.2.2. Missing measurements 4
 2.2.3. Edited measurements ... 6
 2.3. Models and Standards History 8

3. Data coverage and edited measurements 10
 3.1. Missing measurements ... 10
 3.1.1. Over land and ocean ... 10
 3.1.2. Over ocean .. 11
 3.2. Edited measurements ... 12
 3.2.1. Editing criteria definition 12
 3.2.2. Selection of measurements over ocean and lakes 13
 3.2.3. Flagging quality criteria: Ice flag 15
 3.2.4. Flagging quality criteria: Rain flag 15
 3.2.5. Threshold criteria: Global 16
 3.2.6. Threshold criteria: 20-Hz measurements number 17
 3.2.7. Threshold criteria: 20-Hz measurements standard deviation . 17
 3.2.8. Threshold criteria: Significant wave height 18
 3.2.9. Backscatter coefficient 19
 3.2.10. Backscatter coefficient: 20 Hz standard deviation 19
 3.2.11. Radiometer wet troposphere correction 20
 3.2.12. Dual frequency ionosphere correction 21
 3.2.13. Square off-nadir angle 21
 3.2.14. Sea state bias correction 22
 3.2.15. Altimeter wind speed 23
 3.2.16. Ocean tide correction 24
 3.2.17. Sea surface height ... 24
 3.2.18. Sea level anomaly .. 25

4. Monitoring of altimeter and radiometer parameters 26
 4.1. Methodology .. 26
 4.2. 20 Hz Measurements ... 26
 4.2.1. 20 Hz measurements number in Ku-Band and C-Band 27
 4.2.2. 20 Hz measurements standard deviation in Ku-Band and C-Band . 28
 4.3. Off-Nadir Angle from waveforms 30
 4.4. Backscatter coefficient ... 32
 4.5. Significant wave height ... 34
 4.6. Dual-frequency ionosphere correction 36
 4.7. AMR Wet troposphere correction 38
 4.7.1. Comparison with the ECMWF model 38
 4.8. Altimeter wind speed .. 40
5. SSH crossover analysis
 5.1. Overview .. 42
 5.2. Mean of SSH crossover differences 42
 5.3. Mean of SSH crossover differences between Jason-2 and other missions . 44
 5.4. Standard deviation of SSH crossover differences 45
 5.5. Estimation of pseudo time-tag bias 46

6. Sea Level Anomalies (SLA) Along-track analysis 47
 6.1. Overview .. 47
 6.2. Mean of SLA differences between Jason-2 and Jason-1 47
 6.3. Standard deviation of SLA differences between Jason-2 and Jason-1 . 49
 6.4. Mean sea level (MSL) calculation 50
 6.4.1. Mean sea level (MSL) calculation of reference time serie 50
 6.4.2. Regional and global mean sea level trend for Jason-2 50

7. Particular Investigations .. 52
 7.1. Low signal tracking anomaly (AGC anomaly) 52
 7.2. Study applying MQE threshold during 1 Hz compression 54
 7.2.1. Ku - C band range difference 55
 7.2.2. Number of elementary C-band range measurements 56
 7.2.3. C-band significant wave height 57
 7.2.4. Conclusion .. 57
 7.3. AMR incident during cycle 19 59
 7.4. Example of good detection by radiometer of meso-scale atmospheric structure .. 61
 7.5. Impact of different orbit solutions on mean SSH differences at crossovers .. 63
 7.6. Comparison between ITRF2005 and 2008 solutions for Jason-1 and Jason-2 orbits .. 66

8. Outlook on GDRC content ... 69

9. Conclusion ... 70

10. References ... 71

11. Annex .. 75
 11.1. Poster presented at OSTST meeting in 2010 75
1. Introduction

This document presents the synthesis report concerning validation activities of Jason-2 GDRs under SALP contract (N°60453/00 Lot2.C) supported by CNES at the CLS Space Oceanography Division. It is divided into two parts: CAL/VAL Jason-2 activities and Jason-2 / Jason-1 cross-calibration. The OSTM/Jason-2 satellite was successfully launched on June, 20th 2008. Since July, 4th, Jason-2 is on its operational orbit. Until January 2009, it was flying in tandem with Jason-1, only 55s apart. Since the beginning of the mission, Jason-2 data have been analyzed and monitored in order to assess the quality of Jason-2 products. Cycle per cycle reports are available on AVISO webpage. This present report assesses the Jason-2 data quality. Missing and edited measurements are monitored. Furthermore relevant parameters derived from instrumental measurements and geophysical corrections are analyzed. Analyzes focus on Jason-1/Jason-2 cross-calibration. During the formation flight configuration (4th July 2008 to 26th January 2009) both satellites were on the same orbit. This allowed to precisely assess parameter discrepancies between both missions in order to detect geographically correlated biases, jumps or drifts. The SLA performances and consistency with Jason-1 are also described. But even after the end of the flight formation phase, comparison are still possible. Even if only low order statistics are mainly presented here, other analyzes including histograms, plots and maps are continuously produced and used in the quality assessment process. Indeed, it is now well recognized that the usefulness of any altimeter data only makes sense in a multi-mission context, given the growing importance of scientific needs and applications, in particular for operational oceanography. One major objective of the Jason-2 mission is to continue the Jason-1 and T/P high precision altimetry and to allow combination with other missions (ENVISAT, Jason-1). This kind of comparisons between different altimeter missions flying together provides a large number of estimations and consequently efficient long term monitoring of instrument measurements.
2. Processing status

2.1. Processing

End of 2008 Jason-2 data were already available to end users in OGDR (3h data latency) and IGDR (1-2 days data latency). They are available in version "c", the same version as Jason-1 data (for better compatibility). GDR data were released in version T during August 2009. In this report, GDRs from cycle 1 to 79 are used (until 03/09/2010). A description of the different Jason-2 products is available in the OSTM/Jason-2 Products handbook ([23]), as well as in the GDR version T product disclaimer ([21]). Note that a reprocessing of Jason-2 data in GDR version C is planned for 2011.

The purpose of this document is to report the major features of the data quality from the Jason-2 mission. As Jason-2 was in formation flight with Jason-1 (only 55 s apart) until January 2009, this report uses results from intercalibration with Jason-1.

2.2. CAL/VAL status

2.2.1. List of events

The following table shows the major planned events during the beginning of Jason-2 mission.

<table>
<thead>
<tr>
<th>Dates</th>
<th>Events</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 July 2008 5h57</td>
<td>Start of Jason-2 Cycle 0</td>
<td></td>
</tr>
<tr>
<td>8 July 2008 4h45 - 5h25</td>
<td>Poseidon3 altimeter. Dedicated period for validation of tracking mode performances</td>
<td>small data gaps on corresponding passes [Cycle 0]</td>
</tr>
<tr>
<td>11 July 2008 13h00-13h01 and 13h04-13h12</td>
<td>Poseidon3 altimeter. Tracking mode: Diode-DEM (functional)</td>
<td>Functional test of DIODE-DEM tracking mode while onboard DEM was not correct, leading to wrong waveforms and so impacts on altimeter retracking outputs.</td>
</tr>
</tbody>
</table>
Jason-2 validation and cross calibration activities

<table>
<thead>
<tr>
<th>Dates</th>
<th>Events</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 July 2008 1h20</td>
<td>Start of Jason-2 Cycle 1</td>
<td></td>
</tr>
<tr>
<td>16 July 2008 7h10-17h08</td>
<td>upload POS3 - DEM</td>
<td>Data gap on corresponding passes [Cycle 1, Pass 108-144]</td>
</tr>
<tr>
<td>17 July 2008 7h29-11h30</td>
<td>upload POS3 - DEM</td>
<td>Data gap on corresponding passes [Cycle 1, Pass 108-144]</td>
</tr>
<tr>
<td>21 July 2008 23h18</td>
<td>Start of Jason-2 Cycle 2</td>
<td></td>
</tr>
<tr>
<td>11 Mai 2009 12:09 to 14 Mai 2009 13:09</td>
<td>Upload POS3 (new DEM)</td>
<td>Data gaps (northern hemisphere) for passes 154 to 231</td>
</tr>
<tr>
<td>2 February 2009 06:55:11 to 15:58:05</td>
<td>software upload to Poseidon-3</td>
<td>Data gap between passes 204 and 213</td>
</tr>
</tbody>
</table>

.../...
Dates

<table>
<thead>
<tr>
<th>Events</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 February 2010</td>
<td>Upload of Doris V8.0 flight software</td>
</tr>
<tr>
<td>16 September 2010</td>
<td>Jason-2 Cycle 81: Upload of DEM patch for Gavdos transponder calibration</td>
</tr>
</tbody>
</table>

Table 1: Planned events

2.2.2. Missing measurements

This section presents a summary of major satellite or ground segment events that occurred from cycle 0 to 79. Table 2 gives a status about the number of missing passes (or partly missing) for GDRs, as well as the associated events for each cycle.

Up to now, Jason-2 has little missing measurements. In the beginning, they were mainly caused by station acquisition problems. Now, they are mostly due to scheduled events (like altimeter expert calibrations performed every 6 month or software upload).

<table>
<thead>
<tr>
<th>Jason-2 Cycles/Pass</th>
<th>Dates</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>000/222-224</td>
<td>10/07/2008 - 18:28:02 to 20:25:04</td>
<td>Missing telemetry (Usingen station pb)</td>
</tr>
<tr>
<td>000/232</td>
<td>11/07/2008 - 03:57:08 to 04:30:30</td>
<td>Partly missing due to altimeter calibration (long LPF)</td>
</tr>
<tr>
<td>000/235</td>
<td>11/07/2008 - 07:01:28 to 07:27:41</td>
<td>Partly missing due to altimeter calibration (CNG step)</td>
</tr>
<tr>
<td>001/44-46</td>
<td>13/07/2008 - 17:40:00 to 19:37:30</td>
<td>Missing telemetry (Usingen station pb)</td>
</tr>
<tr>
<td>001/48-50</td>
<td>13/07/2008 - 21:37:02 to 23:30:00</td>
<td>Missing telemetry (NOAA station pb)</td>
</tr>
<tr>
<td>001/108-144</td>
<td></td>
<td>several passes partly missing due to upload of new DEM (planned unavailability)</td>
</tr>
<tr>
<td>003/032-035</td>
<td>02/08/2008 - 02:23:45 to 05:46:30</td>
<td>Passes 32 and 35 are partly missing, passes 33 and 34 are completely missing due to missing telemetry (Usingen)</td>
</tr>
<tr>
<td>005/236-241</td>
<td>29/08/2008 - 21:44:56 to 30/08/2008 02:52:07</td>
<td>Missing telemetry (Usingen station pb): passes 237 to 240 completely missing, passes 236 and 241 partly missing</td>
</tr>
</tbody>
</table>
Jason-2 validation and cross calibration activities

<table>
<thead>
<tr>
<th>Jason-2 Cycles/Pass</th>
<th>Dates</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>006/232</td>
<td>08/09/2008 - 15:48:00 to 16:21:22</td>
<td>pass 232 partially missing due to altimeter calibration (long LPF)</td>
</tr>
<tr>
<td>006/235</td>
<td>08/09/2008 - 18:53:00 to 19:19:10</td>
<td>pass 235 partially missing due to altimeter calibration (CNG step)</td>
</tr>
<tr>
<td>016/73</td>
<td>10/12/2008 - 15:11:19 to 15:13:27</td>
<td>pass 73 partially missing due to 1) upload of correction for low signal tracking anomaly and 2) memory dumps (planned unavailability)</td>
</tr>
<tr>
<td>026/33</td>
<td>18/03/2009 - 05:09:15 to 05:10:44</td>
<td>pass 33 has approximately 90 seconds of missing ocean measurements in gulf of guinea (probably due to missing telemetry)</td>
</tr>
<tr>
<td>029/209-210</td>
<td>23/04/2009 - 20:18:36 to 20:35:11</td>
<td>data gap over land (on transition between passes 209 and 210) due to missing telemetry</td>
</tr>
<tr>
<td>031/154-231</td>
<td>11/05/2009 12:09 to 14/05/2009 13:09</td>
<td>Upload of new DEM leading to missing portions (northern hemisphere) for passes 154 to 231</td>
</tr>
<tr>
<td>033/204-213</td>
<td>02/06/2009 - 06:55:11 to 15:58:05</td>
<td>Passes 205 to 212 are completely missing. Passes 204 and 213 are partly missing with respectively 100% and 96% of missing measurements over ocean. This is due to software upload to Poseidon-3.</td>
</tr>
<tr>
<td>034/232</td>
<td>13/06/2009 - 07:07:03 to 07:40:23</td>
<td>Due to long calibration, pass 232 is partly missing with 65% of missing measurements over ocean.</td>
</tr>
<tr>
<td>034/235</td>
<td>13/06/2009 - 10:11:41 to 10:37:50</td>
<td>Due to calibration CNG step, pass 235 is partly missing with 8% of missing measurements over ocean.</td>
</tr>
<tr>
<td>037/54</td>
<td>06/07/2009 - 02:33:12 to 02:34:33</td>
<td>pass 054 has a small data gap due to missing PLTM</td>
</tr>
<tr>
<td>053/57</td>
<td>11/12/2009 - 20:38:19 to 21:29:43</td>
<td>passes 57 and 58 have a data gap due to gyro calibration</td>
</tr>
<tr>
<td>053/232</td>
<td>18/12/2009 - 16:38:09 to 17:12</td>
<td>pass 232 has a data gap due to CAL2 calibration</td>
</tr>
<tr>
<td>053/235</td>
<td>18/12/2009 - 19:43</td>
<td>pass 235 has a 26 minutes data gap due to CNG calibration (mostly over land)</td>
</tr>
<tr>
<td>072/199</td>
<td>23/06/2010 - 19:15:37 to 19:16:59</td>
<td>pass 199 has small data gap due to missing telemetry</td>
</tr>
<tr>
<td>073/232</td>
<td>05/07/2010 - 00:09:33 to 00:42:54</td>
<td>pass 232 has a data gap due to CAL2 calibration</td>
</tr>
</tbody>
</table>

.../...
Jason-2 validation and cross calibration activities

<table>
<thead>
<tr>
<th>Jason-2 Cycles/Pass</th>
<th>Dates</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>073/235</td>
<td>05/07/2010 - 03:14:11 to 03:40:20</td>
<td>pass 235 has a data gap due to CNG calibration (mostly over land)</td>
</tr>
</tbody>
</table>

Table 2: Missing pass status

2.2.3. Edited measurements

Table 3 indicates particular high editing periods (see section 3.2.1.). Most of the occurrences correspond to radiometer wet troposphere correction at default value (due to AMR unavailability) or altimeter low signal tracking anomaly (AGC anomaly), though the latter concerns only few measurements and was corrected during cycle 16 (see section 7.1.).
Jason-2 validation and cross calibration activities

<table>
<thead>
<tr>
<th>Jason-2 Cycles/Passes</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>009/</td>
<td></td>
<td>several passes partly edited by several parameters out of threshold (AGC anomaly)</td>
</tr>
<tr>
<td>010/</td>
<td></td>
<td>several passes partly edited by several parameters out of threshold (AGC anomaly)</td>
</tr>
<tr>
<td>011/</td>
<td></td>
<td>several passes partly edited by several parameters out of threshold (AGC anomaly)</td>
</tr>
<tr>
<td>012/</td>
<td></td>
<td>several passes partly edited by several parameters out of threshold (AGC anomaly)</td>
</tr>
<tr>
<td>013/</td>
<td></td>
<td>several passes partly edited by several parameters out of threshold (AGC anomaly)</td>
</tr>
<tr>
<td>014/</td>
<td></td>
<td>several passes partly edited by several parameters out of threshold (AGC anomaly)</td>
</tr>
<tr>
<td>015/</td>
<td></td>
<td>several passes partly edited by several parameters out of threshold (AGC anomaly)</td>
</tr>
<tr>
<td>019/024-042</td>
<td>07/01/ 11:00:35 to 08/01/2009 03:23:34</td>
<td>radiometer wet troposphere correction at default value due to AMR unavailability</td>
</tr>
<tr>
<td>019/119-161</td>
<td>11/01/ 03:56:38 to 12/01/2009 19:26:14</td>
<td>radiometer wet troposphere correction at default value due to AMR unavailability</td>
</tr>
</tbody>
</table>

Table 3: Edited measurement status
2.3. Models and Standards History

Two versions of the Jason-2 Operational Geophysical Data Records (OGDRs) and Interim Geophysical Data Records (IGDRs) have been generated up to now. These two versions are identified by the version numbers "T" (for test) and "c" in the product filename. For example, version "T" IGDRs are named "JA2_IPN_2PT" and version "c" IGDRs are named "JA2_IPN_2Pc". Both versions adopt an identical data record format as described in Jason-2 User Handbook ([23]) and differ only slightly (names of variables are corrected and 3 variables added). Version "T" O/IGDRs were the first version released soon after launch and was disseminated only to OSTST community. Version "c" O/IGDRs were first implemented operationally from data segment 141 of cycle 15 for the OGDRs (3rd December 2008) and cycle 15 for the IGDRs. Version "c" of Jason-2 data is consistent with version "c" of Jason-1 data. The table below summarizes the models and standards that are adopted for versions "T" and "c" of Jason-2 data. More details on some of these models are provided in Jason-2 User Handbook document ([23]).

Note that up to now only one GDR product version is available (version T). Reprocessing in version "c" is scheduled for 2011. Nevertheless this will not be exactly the same content as version "c" of current IGDR. The evolutions, which will likely be taken into account for coming GDR reprocessing are listed in chapter Outlook on GDRC Content.

<table>
<thead>
<tr>
<th>Model</th>
<th>Product version "T" and "c"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit</td>
<td>Based on Doris onboard navigator solution for OGDRS. DORIS tracking data for IGDRs (DORIS + SLR tracking for cycles 20 to 78) DORIS+SLR+GPS tracking data for GDRs.</td>
</tr>
<tr>
<td>Altimeter Retracking</td>
<td>"Ocean" retracking: MLE4 fit from 2nd order Brown model: MLE4 simultaneously retrieves the following 4 parameters from the altimeter waveforms: Epoch (tracker range offset) → altimeter range Composite Sigma → SWH Amplitude → Sigma0 Trailing Edge slope → Square of mispointing angle "Ice" retracking: Geometrical analysis of the altimeter waveforms, which retrieves the following parameters: Epoch (tracker range offset) → altimeter range Amplitude → Sigma0</td>
</tr>
</tbody>
</table>

.../...
Jason-2 validation and cross calibration activities

<table>
<thead>
<tr>
<th>Model</th>
<th>Product version “T” and “c”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altimeter Instrument Corrections</td>
<td>Consistent with MLE4 retracking algorithm.</td>
</tr>
<tr>
<td>Jason-2 Advanced Microwave Radiometer (AMR) Parameters</td>
<td>Using calibration parameters derived from long term calibration tool developed and operated by NASA/JPL.</td>
</tr>
<tr>
<td>Dry Troposphere Range Correction</td>
<td>From ECMWF atmospheric pressures and model for S1 and S2 atmospheric tides.</td>
</tr>
<tr>
<td>Wet Troposphere Range Correction from Model</td>
<td>From ECMWF model</td>
</tr>
<tr>
<td>Sea State Bias Model</td>
<td>Empirical model derived from 3 years of MLE4 Jason-1 altimeter data with version "b" geophysical models.</td>
</tr>
<tr>
<td>Mean Sea Surface Model</td>
<td>CLS01</td>
</tr>
<tr>
<td>Geoid</td>
<td>EGM96</td>
</tr>
<tr>
<td>Bathymetry Model</td>
<td>DTM2000.1</td>
</tr>
<tr>
<td>Inverse Barometer Correction</td>
<td>Computed from ECMWF atmospheric pressures after removing S1 and S2 atmospheric tides.</td>
</tr>
<tr>
<td>Non-tidal High-frequency De-aliasing Correction</td>
<td>Mog2D high resolution ocean model on I/GDRs. None on OGDRs. Ocean model forced by ECMWF atmospheric pressures after removing S1 and S2 atmospheric tides.</td>
</tr>
<tr>
<td>Tide Solution 1</td>
<td>GOT00.2 + S1 ocean tide . S1 load tide ignored</td>
</tr>
<tr>
<td>Tide Solution 2</td>
<td>FES2004 + S1 and M4 ocean tides. S1 and M4 load tides ignored</td>
</tr>
<tr>
<td>Equilibrium long-period ocean tide model.</td>
<td>From Cartwright and Taylor tidal potential.</td>
</tr>
<tr>
<td>Non-equilibrium long-period ocean tide model.</td>
<td>Mn, Mf, Mtm, and Msqm from FES2004</td>
</tr>
<tr>
<td>Solid Earth Tide Model</td>
<td>From Cartwright and Taylor tidal potential.</td>
</tr>
<tr>
<td>Pole Tide Model</td>
<td>Equilibrium model</td>
</tr>
<tr>
<td>Wind Speed from Model</td>
<td>ECMWF model</td>
</tr>
<tr>
<td>Altimeter Wind Speed</td>
<td>Derived from TOPEX/POSEIDON data</td>
</tr>
</tbody>
</table>

| Table 4: Models and standards adopted for the Jason-2 products. Taken from [23] |
3. Data coverage and edited measurements

3.1. Missing measurements

3.1.1. Over land and ocean

Determination of missing measurements relative to the theoretically expected orbit ground pattern is an essential tool to detect missing telemetry or satellite events for instance. Applying the same procedure for Jason-1 and Jason-2, the comparison of the percentage of missing measurements has been performed. Jason-2 can use several onboard tracking modes: Split Gate Tracker (ie the Jason-1 tracking mode, and used for cycle 0 and half of cycle 1), Diode/DEM (used for cycles 3, 5, 7, and 34) and median tracker (used for the other cycles). These different tracking modes are described by [16]. Thanks to the new modes of onboard tracking (median tracker and especially Diode/DEM), the data coverage over land surface was dramatically increased in comparison with Jason-1 depending on the tracker mode and the period. Figure 1 shows the percentage of missing measurements for Jason-2 and Jason-1 (all surfaces) computed with respect to a theoretical possible number of measurements. Due to differences between altimeter tracking algorithms, the number of available data is greater for Jason-2 than for Jason-1. Differences appear on land surfaces as shown in figure 2. The missing data are highly correlated with the mountains location. The monitoring shows a slight annual signal. The slight increase of Jason-2 missing measurements during cycle 16 is related to the correction of the low signal tracking anomaly (see section 7.1.).

Figure 1: Percentage of missing measurements over ocean and land for JA2 and JA1
3.1.2. Over ocean

When considering ocean surface, the same analysis method leads also to an improvement of Jason-2 data coverage, as plotted on the top left figure 3. It represents the percentage of missing measurements relative to the theory, when limited to ocean surfaces. The mean value is about 0.2% for Jason-2 and 4.5% for Jason-1. Even if already very low, this figure is not significant due to several events where the measurements are missing. All these events are described on table 2.

On figure 3 on the top right, the percentage of missing measurements is plotted without taking into account the cycles where instrumental events or other anomalies occurred. The mean value of missing measurements lowers down to 0.02% for Jason-2 and 2.0% for Jason-1. These additional Jason-1 missing measurements are mainly located over sea ice and near the coasts and are related to the altimeter tracking method. Indeed, selecting latitudes lower than 50° and bathymetry area lower than -1000m (see bottom of figure 3), the Jason-1 percentage becomes very weak (close to 0.03%) which represents less than 100 missing measurements per cycle over open ocean. For Jason-2, the same statistic is comparable but slightly smaller with around 0.01% of missing measurements over open ocean. This weak percentage of missing measurements is mainly explained by the rain cells and sigma0 blooms. These sea states can disturb significantly the Ku band waveform shape leading to an altimeter lost of tracking. Discontinuities at the border between the reception stations (NOAA and Usingen) may also lead to missing measurements.

Figure 2: Map of percentage of available measurements over land for Jason-2 on cycle 79 (left) and for Jason-1 on cycle 320 (right)
3.2. Edited measurements

3.2.1. Editing criteria definition

Editing criteria are used to select valid measurements over ocean. The editing process is divided into 4 parts. First, only measurements over ocean and lakes are kept (see section 3.2.2.). Second, some flags are used as described in section 3.2.3.. Note that the rain flag is not usable in the current release of GDR, but measurements corrupted by rain are well detected by other altimeter parameter criteria. Then, threshold criteria are applied on altimeter, radiometer and geophysical parameters and are described in the table 5. Except for the dual frequency ionosphere correction, only Ku-band measurements are used in this editing procedure, as they mainly represent the end user dataset. Moreover, a spline criterion is applied to remove the remaining spurious data. For each criterion, the cycle per cycle percentage of edited measurements has been monitored. This allows detection of anomalies in the number of removed data, which could come from instrumental, geophysical or algorithmic changes.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min thresholds</th>
<th>Max thresholds</th>
<th>mean edited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea surface height</td>
<td>-130 m</td>
<td>100 m</td>
<td>$0.32%$</td>
</tr>
</tbody>
</table>

Figure 3: Cycle per cycle percentage of missing measurements over ocean (top left), without anomalies (top right), without anomalies and with geographical selections (bottom).
Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min thresholds</th>
<th>Max thresholds</th>
<th>mean edited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea level anomaly</td>
<td>−10 m</td>
<td>10.0 m</td>
<td>0.90%</td>
</tr>
<tr>
<td>Number measurements of range</td>
<td>10</td>
<td>Not applicable</td>
<td>0.42%</td>
</tr>
<tr>
<td>Standard deviation of range</td>
<td>0</td>
<td>0.2 m</td>
<td>1.43%</td>
</tr>
<tr>
<td>Squared off-nadir angle</td>
<td>−0.2 deg²</td>
<td>0.64 deg²</td>
<td>0.81%</td>
</tr>
<tr>
<td>Dry troposphere correction</td>
<td>−2.5 m</td>
<td>−1.9 m</td>
<td>0.00%</td>
</tr>
<tr>
<td>Inverted barometer correction</td>
<td>−2.0 m</td>
<td>2.0 m</td>
<td>0.00%</td>
</tr>
<tr>
<td>AMR wet troposphere correction</td>
<td>−0.5 m</td>
<td>−0.001 m</td>
<td>0.40%</td>
</tr>
<tr>
<td>Ionosphere correction</td>
<td>−0.4 m</td>
<td>0.04 m</td>
<td>1.05%</td>
</tr>
<tr>
<td>Significant wave height</td>
<td>0.0 m</td>
<td>11.0 m</td>
<td>0.48%</td>
</tr>
<tr>
<td>Sea State Bias</td>
<td>−0.5 m</td>
<td>0.0 m</td>
<td>0.21%</td>
</tr>
<tr>
<td>Number measurements of Ku-band Sigma0</td>
<td>10</td>
<td>Not applicable</td>
<td>0.42%</td>
</tr>
<tr>
<td>Standard deviation of Ku-band Sigma0</td>
<td>0</td>
<td>1.0 dB</td>
<td>2.31%</td>
</tr>
<tr>
<td>Ku-band Sigma0 (^1)</td>
<td>7.0 dB</td>
<td>30.0 dB</td>
<td>0.33%</td>
</tr>
<tr>
<td>Ocean tide</td>
<td>−5.0 m</td>
<td>5.0 m</td>
<td>0.09%</td>
</tr>
<tr>
<td>Equilibrium tide</td>
<td>−0.5 m</td>
<td>0.5 m</td>
<td>0.00%</td>
</tr>
<tr>
<td>Earth tide</td>
<td>−1.0 m</td>
<td>1.0 m</td>
<td>0.00%</td>
</tr>
<tr>
<td>Pole tide</td>
<td>−15.0 m</td>
<td>15.0 m</td>
<td>0.00%</td>
</tr>
<tr>
<td>Altimeter wind speed</td>
<td>0 m.s(^{-1})</td>
<td>30.0 m.s(^{-1})</td>
<td>0.68%</td>
</tr>
<tr>
<td>All together</td>
<td>-</td>
<td>-</td>
<td>3.76%</td>
</tr>
</tbody>
</table>

Table 5: Editing criteria

3.2.2. Selection of measurements over ocean and lakes

In order to remove data over land, a land-water mask is used. Only measurements over ocean or lakes are kept. This allows to keep data near the coasts and so to detect potential anomalies in these areas. Furthermore, there is no impact on global performance estimations since the most significant results are derived from analyzes in deep ocean areas. Figure 4 shows the cycle per cycle percentage of measurements eliminated by this selection. The signal shows mainly a seasonal cycle, due to changing properties of land reflection. But it also reveals the impact of the different altimeter tracking modes: SGT (split gate tracking), Median and DIODE/DEM (digital elevation

\(^1\)The thresholds used for the Ku-band Sigma0 are the same than for Jason-1 and T/P, but the same sigma0 bias as between Jason-1 and T/P (about 2.4 dB) is applied.
model). SGT mode, the nominal mode for Jason-1, was used for Jason-2 during cycle 0 and half of cycle 1. This mode does not perform very well over land (as also depicted on right side of figure 2), therefore a comparable small percentage of measurements are edited over land for cycle 1 (approximately 24%). Most of Jason-2 cycles (cycles 2, 4, 6, 8 to 33, and onwards from cycle 35) were operated in Median mode (also used by Envisat). This mode is more adapted for tracking over land than SGT and provides therefore more measurements over land (as also seen on left side of figure 2) and so more measurements are edited (between 25.5% and 27% depending on season) due to the ocean/land criteria. A new tracking mode, DEM, was used during cycles 3, 5, 7, and 34. It has been designed to provide more data over inland water surfaces and coastal areas. It provides a continuous data set over land but some are not meaningful (in areas where the DEM is not accurate enough like in the major mountains). Therefore during these cycles, almost 29% of measurements are removed by the selection. Since 10th of December, 2008 the onbord altimeter configuration was modified to correct for the low signal tracking anomaly, which led to a more strict control of acquisition gain loop (to avoid the tracking of low signal anomalies). This explains the quite steep decrease of land measurements edited around cycle 16 (section 7.1.).

Figure 4: Cycle per cycle percentage of eliminated measurements during selection of ocean/lake measurements.
3.2.3. Flagging quality criteria: Ice flag

The ice flag is used to remove the sea ice data. Figure 5 shows the cycle per cycle percentage of measurements edited by this criterion. Over the shown period, no anomalous trend is detected (figure 5 left) but the nominal annual cycle is visible. Indeed, the maximum number of points over ice is reached during the southern winter (i.e. July - September). As Jason-2 takes measurements between 66° north and south, it does not detect thawing of sea ice (due to global warming), which takes place especially in the northern hemisphere over 66° N. The percentage of measurements edited by ice flag is plotted in the right of figure 5 for a period of 1 year.

![Figure 5: Percentage of edited measurements by ice flag criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79).](image)

3.2.4. Flagging quality criteria: Rain flag

The rain flag is not used for data selection since it is not yet tuned for Jason-2. Indeed rain flag was tuned on Jason-1 automatic gain control loop measurements. As automatic gain control loop is different for Jason-2 and Jason-1 the rain flag currently does not work and is currently set to default values in Jason-2 GDR products. This will be corrected for GDR-C release.
3.2.5. **Threshold criteria: Global**

Instrumental parameters have also been analyzed from comparison with thresholds, after having selected only ocean/lakes measurements and applied flagging quality criteria (ice flag). Note that no measurement is edited by the following corrections: dry troposphere correction, inverted barometer correction (including DAC), equilibrium tide, earth and pole tide. Indeed these parameters are only verified in order to detect data at default values, which might happen during a processing anomaly.

The percentage of measurements edited using each criterion is monitored on a cycle per cycle basis (figure 6). The mean percentage of edited measurements is about 3.8%. A small annual cycle is visible.

![Figure 6: Cycle per cycle percentage of edited measurements by threshold criteria](image-url)

Figure 6: Cycle per cycle percentage of edited measurements by threshold criteria
3.2.6. Threshold criteria: 20-Hz measurements number

The percentage of edited measurements because of a too low number of 20-Hz measurements is represented on left side of figure 7. No trend neither any anomaly has been detected, except for cycle 19, where percentage of edited measurements is slightly higher than usual. This is related to unavailability of Jason-2 Advanced Microwave Radiometer. More information on this unavailability and its impact on editing of other parameters than radiometer wet troposphere correction can be found in section 7.3..

The map of measurements edited by 20-Hz measurements number criterion is plotted on right side of figure 7 and shows correlation with heavy rain and wet areas. Indeed waveforms are distorted by rain cells, which makes them often meaningless for SSH calculation. As a consequence, edited measurements due to several altimetric criteria are often correlated with wet areas.

Figure 7: Percentage of edited measurements by 20-Hz measurements number criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79).

3.2.7. Threshold criteria: 20-Hz measurements standard deviation

The percentage of edited measurements due to 20-Hz measurements standard deviation criterion is shown in figure 8 (left). During cycle 1, slightly more measurements are edited by 20-Hz measurements standard deviation criterion than during other cycles. This is likely due to low signal tracking anomaly which impacted especially this cycle. The right side of figure 8 shows a map of measurements edited by the 20-Hz measurements standard deviation criterion. As in section 3.2.6., edited measurements are correlated with wet areas, but also in regions where ice flag probably missed detection of sea ice (near Antarctic). This also very likely explains the annual signal in left side of the figure.
3.2.8. Threshold criteria: Significant wave height

The percentage of edited measurements due to significant wave height criterion is represented in figure 9. It is about 0.50%. In the beginning of the mission, the curve of measurements edited by SWH threshold criterion is quite irregular, as low signal tracking anomalies occurred during SGT and Median tracking modes, whereas there are no low signal tracking anomalies during DEM tracking modes (cycles 3, 5, and 7). Indeed during periods of low signal tracking anomaly, parameters like significant wave height, backscattering coefficient and squared off-nadir angle from waveforms are out of thresholds and therefore edited (see section 7.1.). Figure 9 (right part) shows that measurements edited by SWH criterion are especially found near coasts in the equatorial regions.
3.2.9. Backscatter coefficient

The percentage of edited measurements due to backscatter coefficient criterion is represented in figure 10. It is about 0.33%. It is also impacted by low signal tracking anomalies, especially during cycle 1. The right part of figure 10 shows that measurements edited by backscatter coefficient criterion are especially found near coasts in the equatorial regions and enclosed sea (Mediterranean).

![Figure 10: Percentage of edited measurements by Sigma0 criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79).](image)

3.2.10. Backscatter coefficient: 20 Hz standard deviation

The percentage of edited measurements due to 20 Hz backscatter coefficient standard deviation criterion is represented in figure 11. It is about 2.3%. It is also impacted by low signal tracking anomalies, especially during cycle 1. The right part of figure 10 shows that measurements edited by 20 Hz backscatter coefficient standard deviation criterion are especially found in regions with disturbed waveforms.
3.2.11. Radiometer wet troposphere correction

The percentage of edited measurements due to radiometer wet troposphere correction criterion is represented in figure 12. It is about 0.4%. When removing cycles which experienced problems, percentage of edited measurements drops to 0.1%. For cycle 19 the percentage of edited measurements is higher than usual. This is linked to radiometer wet troposphere correction at default value due to AMR unavailability.

Figure 11: Percentage of edited measurements by 20 Hz Sigma0 standard deviation criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79).

Figure 12: Percentage of edited measurements by radiometer wet troposphere criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79).
3.2.12. Dual frequency ionosphere correction

The percentage of edited measurements due to dual frequency ionosphere correction criterion is represented in figure 13. It is about 1.05% and shows no drift. The map 13 shows that measurements edited by dual frequency ionosphere correction are mostly found in equatorial regions, but also near sea ice.

![Figure 13: Percentage of edited measurements by dual frequency ionosphere criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79).](image)

3.2.13. Square off-nadir angle

The percentage of edited measurements due to square off-nadir angle criterion is represented in figure 14. It is about 0.81%. As for other parameters, impact of low signal tracking anomalies is visible especially for cycle 1. The map 14 shows that edited measurements are mostly found in coastal regions and regions with disturbed waveforms.

![Figure 14: Percentage of edited measurements by square off-nadir angle criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79).](image)
3.2.14. Sea state bias correction

The percentage of edited measurements due to sea state bias correction criterion is represented in figure 15. The percentage of edited measurements is about 0.21% and shows no drift.

The map 15 shows that edited measurements are mostly found in equatorial regions near coasts.

Figure 15: Cycle per cycle percentage of edited measurements by sea state bias criterion (left).
Right: Map of percentage of edited measurements by sea state bias criterion over a one year period (cycles 43 to 79).
3.2.15. Altimeter wind speed

The percentage of edited measurements due to altimeter wind speed criterion is represented in figure 16. It is about 0.68%. The measurements are edited, because they have default values. This is the case when sigma0 itself is at default value, or when it shows very high values (higher than 25 dB), which occur during sigma bloom and also over sea ice. Indeed, the wind speed algorithm (which uses backscattering coefficient and significant wave height) can not retrieve values for sigma0 higher than 25 dB.

The map 16 showing percentage of measurements edited by altimeter wind speed criterion is correlated with maps 15 and 9.

Figure 16: Percentage of edited measurements by altimeter wind speed criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79).
3.2.16. Ocean tide correction

The percentage of edited measurements due to ocean tide correction criterion is represented in figure 17. It is about 0.09% and shows a small annual signal. The ocean tide correction is a model output, there should therefore be no edited measurements. Indeed there are no measurements edited in open ocean areas, but only very few near coasts (Mediterranean Sea, Black Sea) or in lakes (Caspian Sea) or rivers (see map 17). These measurements are mostly at default values. Generally approximatively the same amount of measurements is edited by ocean tide correction for each cycle. The small annual signal visible in figure 17 comes from the seasonal fluctuation of available ocean data (due to seasonal fluctuation of sea ice coverge).

![Figure 17: Percentage of edited measurements by ocean tide criterion. Left: Cycle per cycle monitoring. Right: Map over a one year period (cycles 43 to 79).](image)

3.2.17. Sea surface height

The percentage of edited measurements due to sea surface height criterion is represented in figure 18. It is about 0.32% and shows no drift. The measurements edited by sea surface height criterion are mostly found near coasts in equatorial regions (see map 18).
3.2.18. Sea level anomaly

The percentage of edited measurements due to sea level anomaly criterion is represented in figure 19. It is about 0.9% (0.6% without cycle 19) and shows no drift. The peak is related to AMR unavailability (see figure 12 (showing the percentage of measurements edited by AMR)), as the SLA clip contains, among other parameters, the radiometer wet troposphere correction. Whereas the map in figure 19 allows us to plot the measurements edited due to sea level anomaly out of thresholds (after applying all other threshold criteria). There are only very few measurements, principally located in Caspian Sea.
4. Monitoring of altimeter and radiometer parameters

4.1. Methodology

Both mean and standard deviation of the main parameters of Jason-2 have been monitored since the beginning of the mission. Moreover, a comparison with Jason-1 parameters has been performed: it allows us to monitor the bias between the parameters of the 2 missions. Two different methods have been used to compute the bias:

- Till Jason-2 cycle 20, Jason-2 and Jason-1 ground tracks are on the same ground track and are spaced out about 1 minute apart. The mean of the Jason-1 - Jason-2 differences can be computed using a point by point repeat track analysis.

- From Jason-2 cycle 21 (Jason-1 cycle 260), a maneuver sequence was conducted (from 26th of January to 14th of February 2009) to move Jason-1 to the new tandem mission orbit. It’s the same as already used by Topex/Poseidon during its tandem phase with Jason-1, but there is a time shift of 5 days. Geographical variations are then too strong to directly compare Jason-2 and Jason-1 parameters on a point by point basis. Therefore cycle per cycle differences have been carried out to monitor differences between the two missions. Nevertheless, data gaps on both satellites have been taken into account. These differences are quite noisy, especially for corrections which vary rapidly in time and space. Therefore occasional jumps will be covered by the noise of the differences. Nevertheless with longer time series (which can be filtered), drifts and permanent jumps can be detected.

Note that differences are done over Jason-2 cycles 1 to 79, corresponding to Jason-1 cycles 240 to 318/319.

4.2. 20 Hz Measurements

The monitoring of the number and standard deviation of 20 Hz elementary range measurements used to derive 1 Hz data is presented here. These two parameters are computed during the altimeter ground processing. For Jason-1, before performing a regression to derive the 1 Hz range from 20 Hz data, a MQE (mean quadratic error) criterion is used to select valid 20 Hz measurements. This first step of selection consists in verifying that the 20 Hz waveforms can be approximated by a Brown echo model (Brown, 1977 [7]) (Thibaut et al. 2002 [36]). Then, through an iterative regression process, elementary ranges too far from the regression line are discarded until convergence is reached. Thus, monitoring the number of 20 Hz range measurements and the standard deviation computed among them is likely to reveal changes at instrumental level. The Jason-1 MQE threshold are not applicable to Jason-2, using those thresholds would edit more measurements than necessary. Therefore the Jason-2 MQE threshold has been set to default, leading to no editing based on MQE values. Note that for Jason-2 data in version GDR-C, specific Jason-2 MQE thresholds are computed and will be applied.
4.2.1. 20 Hz measurements number in Ku-Band and C-Band

Jason-2 number of elementary 20 Hz range measurements is very stable in time with an average of 19.66 for Ku-band and 19.43 for C-band as shown on figure 21, whereas Jason-1 data show a slight annual cycle (especially for C-band). Figures 22 and 23 show on the left the daily monitoring of the mean and standard deviation of Jason-1 - Jason-2 differences of 20-Hz measurements number in Ku-Band and C-band during the formation flight phase. Besides a slight variation, related to the annual cycle of Jason-1 data, they are quite stable and do not show any anomaly. Number of 20 Hz range measurements is slightly higher for Jason-2 than for Jason-1, since mean of Jason-1 - Jason-2 difference is slightly negative (-0.1 for Ku-band and -0.19 for C-band). The regions where Jason-1 has less elementary range measurements are especially located around Indonesia, as shown on map of Jason-1 - Jason-2 differences (right side of figures 22 and 23). They seem to be correlated to high MQE values (see figure 20), especially in C-band. Since the current MQE criterium for Jason-2 does not eliminate 20 Hz measurements used for 1 Hz compression (whereas for Jason-1 this is the case), number of 20 Hz range measurements is smaller for Jason-1 than for Jason-2 in high MQE areas.

Figure 20: Map of 20 Hz C-band MQE for Jason-2 cycle 10.

Figure 21: Cyclic monitoring of number of elementary 20 Hz range measurements for Jason-1 and Jason-2 for Ku-band (left) and C-band (right).
4.2.2. 20 Hz measurements standard deviation in Ku-Band and C-Band

Jason-2 standard deviation of the 20 Hz measurements is 8.0 cm for Ku-Band and 17.3 cm for C-Band (figure 24). It is very similar to Jason-1 data (especially during the formation flight phase). Figure 25 and 26, showing daily monitoring of Jason-1 - Jason-2 difference of standard deviation of the 20 Hz measurements in Ku-Band and C-Band (on the left), reveal no trend neither anomaly. C-Band standard deviation of the 20 Hz measurements rms is noisier than those of Ku-Band. This is directly linked to the C-band standard deviation which is higher than the Ku, as the onboard averaging is performed over less waveforms (6 Ku for 1 C) leading to an increased noise.
Jason-2 validation and cross calibration activities

Figure 24: Cyclic monitoring of rms of elementary 20 Hz range measurements for Jason-1 and Jason-2 for Ku-band (left) and C-band (right).

Figure 25: Daily monitoring of mean and standard deviation of Jason-1 - Jason-2 differences for the rms of elementary 20 Hz Ku-band range measurements (left) and map showing mean of Jason-1 - Jason-2 differences over cycles 1 to 20 (right).

Figure 26: Daily monitoring of mean and standard deviation of Jason-1 - Jason-2 differences for rms of elementary 20 Hz C-band range measurements (left) and map showing mean of Jason-1 - Jason-2 differences over cycles 1 to 20 (right).
4.3. Off-Nadir Angle from waveforms

The off-nadir angle is estimated from the waveform shape during the altimeter processing. The square of the off-nadir angle, averaged on a daily basis, has been plotted for Jason-1 and Jason-2 on the left side of figure 27, whereas the right side shows the histograms over one cycle. The mean values are slightly positive. This mean value is not significant in terms of actual platform mispointing for Jason-2. Mispointing of Jason-2 is quite stable, close to 0.01 deg². Whereas Jason-1 may show higher values (related to the reduced tracking performance of both star trackers, especially during fixed-yaw). Jason-1 experienced especially during 2010 very high mispointing values, for more information see Jason-1 validation report [43]. Jason-1 mispointing situation has been highly improved since end of 2010.

The small shift of Jason-2 mispointing is related to small differences in antenna aperture values used for Jason-1 and Jason-2 processing. Indeed [38] shows, that retracking with different values of antenna aperture, changes the mean value of Jason-2 mispointing (see figure 28).

![Figure 27: Square of the off-nadir angle deduced from waveforms (deg²) for Jason-1 and Jason-2: Daily monitoring (left), histograms for Jason-2 cycle 10 (Jason-1 cycle 249).](image-url)
Figure 28: Histograms of Jason-2 mispointing after retracking with different antenna beamwidth (from [38]): 1.26° (blue), 1.28° (light blue), 1.30° (dark blue).
The Jason-2 Ku-band and C-band backscattering coefficient shows good agreement with Jason-1 as visible for cyclic monitoring in figure 29 (top left and right). Left sides of figures 30 and 31 show daily monitoring of mean differences during the formation flight phase. For Ku-band, a small bias close to 0.15 dB is detected, it varies slightly (+/- 0.05 dB). Indeed, Jason-1 backscattering coefficient is slightly impacted by the higher off-nadir angles (due to low star tracker availability). The average standard deviation of both Sigma0 differences (measurements by measurements) is also very low around 0.15 dB rms. C-Band sigma0 differences indicate a small bias close to 0.2 dB. In the meantime, the map of mean differences (right side of figures 30 and 31) highlights very small differences. They are mainly located in areas where waveforms can be disturbed by rain cells or sigma0 blooms for instance. As previously mentioned in edited measurements section, this is likely linked to the MQE criteria not tuned for Jason-2. The impact is stronger concerning the C-Band (right side of figure 31). During the tandem phase (from Jason-2 cycle 21 onwards), mean differences continue to be calculated but comparing only the global statistics cycle by cycle (see bottom of figure 29). Although the statistic is calculated less accurately, a similar bias is observed as during the formation flight phase, and no significant drift is detected between both missions.

![Figure 29: Cyclic monitoring of Sigma0 for Jason-1 and Jason-2 for Ku-band (left) and C-band (right) and Jason-1 - Jason-2 differences (bottom).]
Figure 30: Daily monitoring of mean and standard deviation of Jason-1 - Jason-2 differences for Ku-band Sigma0 (left) and map showing mean of Jason-1 - Jason-2 differences over cycles 1 to 20.

Figure 31: Daily monitoring of mean and standard deviation of Jason-1 - Jason-2 differences for C-band Sigma0 (left) and map showing mean of Jason-1 - Jason-2 differences over cycles 1 to 20.
4.5. Significant wave height

As for Sigma0 parameter, a very good consistency between both significant wave height is shown (see top left and right of figure 32). A small bias close to around -1.2 cm is calculated over the formation flight phase. It is close to -0.7 cm in C-band (see left side of figures 33 and 34). It is stable in time and space with locally stronger differences (see difference maps in right side of figures 33 and 34). These differences are too weak to impact scientific applications. They are generally due to ground processing differences between both missions as the MQE criteria for instance, especially for C-band (see section 7.2.). As previously, extending the monitoring of SWH bias during the tandem phase (bottom of figure 32) highlights larger variations since both satellites do not measure the same SWH. However bias is still stable and no drift is detected.

In first semester of 2010, a slight increase is observed for significant wave height for both satellites. This is related to natural variations in high latitudes, as similar temporally increases were already observed on Jason-1 for previous years. Note that this increase is reduced when computing latitude weighted statistics.

![Figure 32: Cyclic monitoring of SWH for Jason-1 and Jason-2 for Ku-band (left) and C-band (right) and Jason-1 - Jason-2 differences (bottom).](image-url)
Figure 33: Daily monitoring of mean and standard deviation of Jason-1 - Jason-2 differences for Ku-band SWH (left) and map showing mean of Jason-1 - Jason-2 differences over cycles 1 to 20.

Figure 34: Daily monitoring of mean and standard deviation of Jason-1 - Jason-2 differences for C-band SWH (left) and map showing mean of Jason-1 - Jason-2 differences over cycles 1 to 20.
4.6. Dual-frequency ionosphere correction

The dual frequency ionosphere corrections derived from the Jason-2 and Jason-1 altimeters show a mean difference of about -0.9 cm (figure 35 (left)), with cycle to cycle variations lower than 1 mm. This bias is due to the relative Ku-band (-8.3 cm) and C-band (-13.1 cm) range difference between Jason-1 and Jason-2. As the dual-frequency ionosphere correction is derived from a combination of Ku and C band ranges, a bias of -8.5 mm between Jason-1 and Jason-2 results [14]. Apart from this bias, the two corrections are very similar and vary according to the solar activity. The map of local differences (figure 35 right) shows increased differences near Indonesia (probably correlated to high MQE values).

Figure 35: Daily monitoring of mean and standard deviation of Jason-1 - Jason-2 differences for dual-frequency ionospheric correction (left) and map showing mean of Jason-1 - Jason-2 differences over cycles 1 to 20.

Figure 36: Cyclic monitoring of dual-frequency ionosphere for Jason-1 and Jason-2 (right) and Jason-1 - Jason-2 differences (left).

Notice that, as for TOPEX and Jason-1 (Le Traon et al. 1994 [27], Imel 1994 [26], Zlotnicky 1994 [45]), it is recommended to filter the Jason-2 dual frequency ionosphere correction before using it as a SSH geophysical correction (Chambers et al. 2002 [11]). A low-pass filter has thus
been used to remove the noise of the correction in all SSH results presented in the following sections. Plotting difference of non-filtered ionospheric correction between Jason-1 and Jason-2 versus Jason-2 ionospheric correction shows an apparent scale error, which disappears when using filtered data (see figure 37). As currently ionosphere correction is very low, the ionosphere noise is of the same order of magnitude as the ionosphere correction itself. Therefore plotting the difference of non-filtered dual-frequency ionospheric correction versus dual-frequency ionospheric correction induces an apparent scale error.

Figure 37: Diagram of dispersion of Jason-1 - Jason-2 versus Jason-2 dual-frequency ionosphere correction for Jason-2 cycle 15. Left: non-filtered, right: filtered.
4.7. AMR Wet troposphere correction

Figure 38 shows on the left side the daily monitoring of the difference of radiometer wet troposphere correction between the two missions (JMR - AMR) during the formation flight phase. AMR is globally slightly dryer than JMR (-0.15 cm). But locally, especially near equator and coasts (right side of figure 38), AMR is wetter than JMR. In the daily monitoring, an odd behaviour is visible after the Jason-1 safehold mode in August 2008 which occurred in the middle of Jason-2 cycle 3 till end of Jason-2 cycle 4: difference between JMR and AMR shows several large anomalies reaching up to 7 mm. This is due to odd behaviour of JMR, as described in the next section.

Figure 38: Daily monitoring of mean and standard deviation (left) of Jason-1 - Jason-2 radiometer wet troposphere correction. Map showing mean of Jason-1 - Jason-2 differences over cycles 1 to 20.

4.7.1. Comparison with the ECMWF model

The ECWMF wet troposphere correction has been used to check the Jason-1 and Jason-2 radiometer corrections. Daily differences are calculated and plotted in figure 39. It clearly appears (on left side of figure 39) that Jason-2 radiometer correction (AMR) from GDR products is much more stable than for Jason-1 (JMR), especially at the beginning of Jason-2 period where large oscillations (up to 7mm) are observed between JMR and model. Indeed after the safehold mode of Jason-1 in August 2008 (corresponding to Jason-2 cycle 4), JMR experienced some thermal instability. In addition, small differences linked to yaw-dependent effects (as also observed on TOPEX radiometer (Dorandeu et al., 2004, [18])) are visible (yaw maneuvers are indicated as gray lines on left side of figure 39). In order to take into account these effects, new JMR calibration coefficients are provided and updated at each Jason-1 GDR reprocessing campaign. There is also a JMR replacement product available which corrects for the instabilities during August 2008 (Brown et al. 2009, [9]). Now, thanks to the new ARCS (Autonomous Radiometer Calibration System) (Brown et al. 2009, [9]) calibration system set up for Jason-2, AMR radiometer correction is calibrated at each GDR cycle and the calibration coefficients are modified if necessary. Nevertheless this can also introduce jumps such the one observed during cycle 069 (right side of figure 39), due to new calibration coefficients. In addition, the AMR comparison with model highlights also long-term signals with Jason-2 not clearly observed with Jason-1. As a result of a poor confidence in stability of just one radiometer, Envisat wet troposphere correction (MWR) is also compared to the ECMWF model in same
Jason-2 validation and cross calibration activities

figure 39 (left side). Concerning the period of spring 2009, Envisat and Jason-2 provide similar differences with model likely in relationship with evolutions in the ECWMF operational model. Focusing on the beginning of the Jason-2 period, MWR correction shows a negative trend with the model (3mm over 3 months) also observed on JMR/model curve. In the meantime, this trend is not detected on AMR (GDR)/model comparisons which is much more stable over this period. This last result does not demonstrate necessarily the better stability of AMR. Indeed, there might be a risk that real geophysical signals are absorbed by the calibration method used. Finally, the cross-comparison between all radiometers and models available is necessary to analyze the stability of each wet troposphere correction. An overview of the wet troposphere correction importance for mean sea level is given in Obligis et al. [28].

Figure 39: Daily monitoring of radiometer and ECMWF model wet troposphere correction differences for Jason-1 (blue), Jason-2 (red) and Envisat (green) limited to 66° latitude. Vertical gray lines correspond to yaw maneuvers on Jason-2. Right: daily monitoring for Jason-2 GDRs (red) and IGDRs (pink). Vertical green lines correspond to ECMWF model version changes, black lines correspond to AMR calibration coefficients changes on GDR products also impacting IGDR product (but latter).
4.8. Altimeter wind speed

Figure 40 shows on the left side the daily monitoring of the difference of altimeter wind speed between the two missions. Jason-2 altimeter wind speed is slightly higher than for Jason-1, about 0.4 m/s. This is also shown on figure 41 displaying wind speed histograms. Note that the histograms of Jason-2 and Jason-1 have different shapes. Locally (right side of figure 40), altimeter wind speed from Jason-1 is higher than from Jason-2. The signal visible on daily monitoring, is anti-correlated to the signal visible on daily monitoring of backscattering coefficient (see figure 30), as wind speed computation uses principally backscattering coefficient. This signal is related to events of high mispointing of Jason-1.

![Image of daily monitoring of mean and standard deviation (left) of Jason-1 - Jason-2 altimeter wind speed. Map showing mean of Jason-1 - Jason-2 differences over cycles 1 to 20.](image)

Figure 40: Daily monitoring of mean and standard deviation (left) of Jason-1 - Jason-2 altimeter wind speed. Map showing mean of Jason-1 - Jason-2 differences over cycles 1 to 20.

Notice that in the Jason-1 science ground processing corresponding to GDR-A release (2002), Ku-Band Sigma0 was biased by a -2.26 dB value in order to calculate correctly the altimeter wind speed derived from an algorithm ([22]) based on TOPEX Sigma0. This value corresponds approximately to the bias between Jason-1 and TOPEX sigma0 estimated during the Jason-1/TOPEX formation flight phase ([18]). From Jason-1 GDR-B release on-wards (2006), the wind speed is calculated with an algorithm based on ([22]), but fitted on Jason-1 Sigma0 in order to not apply the TOPEX/Jason-1 sigma0 bias (Collard algorithm). It is the same algorithm applied for Jason-2 now, although there is a 0.15 dB bias between Jason-1 and Jason-2. Thanks to the altimetry standard improvements since Jason-1 launch ([32], [12]), the error budget of SSH calculation has been reduced. Through the sea state bias correction, the Sigma0 bias uncertainty has thus become not inconsiderable as shown in recent study ([40]). Possible corrections are presented in ([41]). This will be taken into account in next Jason-2 GDR release.
Figure 41: **Histogram of altimeter (Jason-1 in blue, Jason-2 in red) and model wind speed (light blue) for a 10 day period.**
5. SSH crossover analysis

5.1. Overview

SSH crossover differences are the main tool to analyze the whole altimetry system performances. They allow us to analyze the SSH consistency between ascending and descending passes. However in order to reduce the impact of oceanic variability, we select crossovers with a maximum time lag of 10 days. Mean and standard deviation of SSH crossover differences are computed from the valid data set to perform maps or a cycle by cycle monitoring over all the altimeter period. In order to monitor the performances over stable surfaces, additional editing is applied to remove shallow waters (bathymetry above -1000m), areas of high ocean variability (variability above 20 cm rms) and high latitudes (\(> |50| \text{deg}\)). SSH performances are then always estimated with equivalent conditions.

The main SSH calculation for Jason-2 and Jason-1 are defined below.

\[
SSH = \text{Orbit} - \text{Altimeter Range} - \sum_{i=1}^{n} \text{Correction}_i
\]

with \(\text{Jason} - 1/\text{Jason} - 2\) \(\text{Orbit} = \text{POECNES orbit}\) for GDR products, and

\[
\sum_{i=1}^{n} \text{Correction}_i = \begin{array}{l}
\text{Dry troposphere correction} \\
+ \text{Dynamical atmospheric correction} \\
+ \text{Radiometer wet troposphere correction} \\
+ \text{Dual frequency ionospheric correction (filter 250 km)} \\
+ \text{Non parametric sea state bias correction} \\
+ \text{GOT00 ocean tide correction (including loading tide)} \\
+ \text{Earth tide height} \\
+ \text{Pole tide height}
\end{array}
\]

5.2. Mean of SSH crossover differences

The cycle by cycle mean of SSH differences is plotted in figure 42 for Jason-1 and Jason-2. Both curves are very similar and do not highlight any anomaly. However, most of the time they are slightly negative (-0.57 cm for Jason-2 and -0.32 cm for Jason-1 in average) indicating a systematic ascending/descending SSH bias. The map of SSH differences calculated over all the Jason-2 period in left side of figure 43, shows that this bias is not spatially homogenous with a negative structure reaching -2 cm in the southern Atlantic, east of the southern Pacific, and west of the Indian Ocean and tropical Pacific. In inverse, a positive patch close to +2 cm is observed in the northern Atlantic. Although orbit are fully compliant with mission requirements, orbit calculation is the main source to explain these discrepancies between ascending and descending passes since they are significantly reduced using other orbits than those available in GDR products, such as orbits based only on GPS solutions provided by CNES ([10]) or JPL ([4]). The map of mean SSH crossover differences
plotted in right side of figure 43 was calculated by applying the JPL orbit (JPL09A) instead of GDR operational orbit. It just highlights a small hemispheric signal lower than 1 cm between northern and southern hemisphere. It comes from a small pseudo time tag bias (-0.28 ms) as explained further in this chapter.
5.3. Mean of SSH crossover differences between Jason-2 and other missions

Dual-mission crossover performances are computed between Jason-2 and Jason-1, as well as Jason-2 and Envisat. Mean SSH differences at Jason-2/Jason-1 crossovers (shown on left side of figure 44) are quite homogeneous (a part off a bias of approximately 7.5 cm). It shows a small regional structures of about 1 cm, especially in southern high latitudes. This structure was also seen during the flight formation phase, when differences without applying geophysical corrections were possible. It is dependant on orbit solutions, as it is strongly reduced when using GSFC orbit solutions for both missions ([3], see also right side of figure 48).

Though Jason-2 and Envisat are using CNES produced POE (for this study, POE GdrC standard is also used for Envisat), a large east/west bias is observed on right side of figure 44, see also [17]. This is also seen on Jason-1/Envisat crossovers, especially since 2007 (see [20]). This strange behaviour is under investigation.

Figure 44: Map of mean of SSH crossovers differences between Jason-2 and Jason-1 for Jason-2 cycle 1 to 72 using GDR orbit (left) and between Jason-2 and Envisat for Jason-2 cycles 7 to 72 using GDR-C orbit for both missions (right).
5.4. Standard deviation of SSH crossover differences

The cycle by cycle standard deviation of SSH crossovers differences are plotted for Jason-2 and Jason-1 in figure 45 after applying geographical criteria as defined previously. Both missions show very good performances, very similar and stable in time. No anomaly is detected (the value above 6 cm for Jason-1 is related to degraded orbit quality due to several inclination maneuvers during Jason-1 cycle 315). The average figure is 5.14 cm rms for both missions. Keeping in mind that during the Jason-1/TOPEX formation flight phase in 2002, the same statistic using Jason-1 GDR-A products was close to 6.15 cm (see [18]). This illustrates the improvements performed in the altimetry ground processing since the Jason-1 launch especially thanks to new retracking algorithms, new geophysical corrections (oceanic tidal, dynamic atmospheric correction, ...) and new orbit calculations implemented first in GDR-B and later in GDR-C release (see [32] concerning impact of GDR-B/GDR-A, [12] concerning impact of GDR-C/GDR-B).

Though Jason-1 and Jason-2 show very good performances and are within the mission specifications, their standard deviation of SSH differences at crossovers is sometimes higher than usual. On right side of figure 45, statistics for Jason-1 were computed for the same periods as Jason-2. Statistics for both satellites show similar signals. Periods of increased standard deviation seem to be correlated to solar radio flux (10.7cm) values (available at [35]).

Figure 45: Cycle by cycle standard deviation of SSH crossover differences for Jason-2 and Jason-1 (left) and superposed with solar radio flux (right) over the Jason-2 period. Only data with abs(latitude) < 50°, bathymetry < -1000m and low oceanic variability were selected.
5.5. Estimation of pseudo time-tag bias

The pseudo time tag bias (α) is found by computing at SSH crossovers a regression between SSH and orbital altitude rate (\dot{H}), also called satellite radial speed:

$$SSH = \alpha \dot{H}$$

This empirical method allows us to estimate the potential real time tag bias but it can also absorb other errors correlated with \dot{H}. Therefore it is called "pseudo" time tag bias. The monitoring of this coefficient estimated at each cycle is performed for Jason-1 and Jason-2 in figure 46. Both curves are very similar highlighting a 60-day signal and a bias close to -0.27 ms for Jason-1 and -0.29 ms for Jason-2. As mentioned just previously, this bias directly explained the small hemispheric differences observed at SSH crossover differences with maximal differences close to 8 mm where \dot{H} is maximal (15 m.s^{-1}) at medium latitudes ($\pm 50^\circ$). Recently, the origin of this pseudo time tag bias was found by CNES [6], nevertheless the 60 day-signal is still unexplained. However, a correction containing $\alpha \dot{H}$ in Jason-1 GDR-C products ([2]) has been already added to improve the Jason-1 SSH calculation. The datation bias will also be corrected on the next Jason-2 GDR release.

Figure 46: Monitoring of pseudo time-tag bias estimated cycle by cycle from GDR products for Jason-2 and Jason-1
6. Sea Level Anomalies (SLA) Along-track analysis

6.1. Overview

The Sea Level Anomalies (SLA) are computed along track from the SSH minus the mean sea surface (MSS CLS2001) with the SSH calculated as defined in previous section 5.1.:

\[SLA = SSH - MSS(\text{CLS2001}) \]

SLA analysis is a complementary indicator to estimate the altimetry system performances. It allows us to study the evolution of SLA mean (detection of jump, abnormal trend or geographical correlated biases), and also the evolution of the SLA variance highlighting the long-term stability of the altimetry system performances. In order to take advantage of the Jason-2/Jason-1 formation flight phase (cycles 1 to 20), we performed direct SLA comparisons between both missions during this period. Corrections applied in SSH calculation are theoretically the same for Jason-1 and Jason-2 since both satellites measure the same ocean. Thus, it’s possible to not apply them in order to obtain directly information on the altimeter range and the orbit calculation differences. However, as the repetetivity of both ground passes is not exact (±1 km cross-track distance), SLA measurements have to be projected and interpolated over the Jason/TOPEX theoretical ground pass after applying the MSS in order to take into account cross-track effects on SSH.

\[\Delta SLA_{J1-J2} = [(Range_{Ku} - Orbit - MSS)_{J1}]_T - [(Range_{Ku} - Orbit - MSS)_{J2}]_T \]

This allows us also to select the intersection of both datasets and compare exactly the same data. After Jason-1 ground track change, direct SLA comparisons are no more possible. Thus, global statistics computed cycle by cycle are just basically compared.

6.2. Mean of SLA differences between Jason-2 and Jason-1

The cycle by cycle monitoring of mean SLA differences between Jason-1 and Jason-2 is plotted in figure 47 over all the Jason-2 period. During the formation flight phase, the SSH bias is computed with and without the SSH corrections. Both curves are very similar and stable in time with variations lower than 1 mm rms. They are just spaced out by a 0.8 cm bias resulting from differences between Jason-1 and Jason-2 ionosphere corrections and also between radiometer wet troposphere corrections as previously mentioned in this paper. The global average SSH bias is close to -7.45 cm using SSH corrections and -8.3 cm without. Investigations by CNES presented at Seattle OSTST in June 2009 [Zaouche, 2009], [Desjonqueres, 2009] explained the origin of most of the bias between both altimeters. The authors explain that there are 2 origins. Firstly the use of a truncated altimeter PRF (Pulse repetition frequency) in the Jason-1 and Jason-2 ground segments leads to a Jason-1 minus Jason-2 difference of 2.15 cm, and secondly a difference in the characterization parameter set for Ku-band leads to a difference of -11.70 cm, combining to a Jason-1 minus Jason-2 bias of -9.5 cm. This is very close to the observed bias of -8.3 cm. However, the more crucial point for scientific applications is to insure that there is no drift between both missions, since the global bias can be easily corrected a fortiori. The extension of the monitoring of the SSH bias after the Jason-1 ground track change is precisely a good way to check the long-term Jason-1 and Jason-2 stability. It is plotted over 79cycles in figure 47 and does not highlight any drift. Spatial SLA differences (only during the Jason-1 formation flight phase) show a very homogenous map between both missions as plotted in left side of figure 48. However a weak hemispheric bias
lower than 1 cm is detected in relationship with orbit calculation differences. Indeed, the use of a GSFC orbit for both Jason-1 and Jason-2, showed that this hemispheric bias is reduced (right side of figure 48).

Figure 47: Cycle by cycle monitoring of SSH bias between Jason-1 and Jason-2 before and after Jason-1 ground-track change (black curve and dots) and SSH bias without applying corrections in SSH calculation for both missions only during the formation flight phase (gray curve).

Figure 48: Maps of SLA mean differences between Jason-1 and Jason-2 during formation flight phase (cycles 1 to 20) using official POE orbit from GDRs (left) and GSFC09 orbit (right)
6.3. Standard deviation of SLA differences between Jason-2 and Jason-1

The monitoring of SLA standard deviation has been computed for both missions over the whole data set (plotted in figure 49). Both curves are very well correlated during the formation flight phase (close to 10.7 cm rms in average) although small differences are observed for some cycles in relationship with specific altimeter events (maneuvers, altimeter incidents) impacting the data coverage or the orbit calculation. After the Jason-1 ground track change (from Jason-2 cycle 21 onwards), Jason-1 standard deviation increases by almost 3 cm rms in average: 10.73 cm rms for Jason-1 instead of 10.44 cm rms for Jason-2. The use of the Mean Sea Surface CLS2001 [24] explains the Jason-1 standard deviation increase since MSS errors are higher outside the historical T/P-Jason ground track. Similar feature was observed comparing Jason-1 and TOPEX performances after T/P satellite was moved on its new ground track in August 2002 ([18]). The new MSS CNES/CLS 2010 ([34]), using all the satellite tracks including the interleaved T/P and Jason-1 ground tracks - which was computed in the frame of the SLOOP project ([19]) - improves the SLA calculation also for the interleaved ground tracks. Cartography of standard deviation of spatial Jason-1 minus Jason-2 SLA differences (not shown here) does not show any anomaly. It varies indeed in function of noise on measurements, which is dependant on significant wave height. Therefore, standard deviation of SLA differences is higher in regions with important significant wave heights.

![Figure 49: Cycle by cycle monitoring of SLA standard deviation for Jason-1 and Jason-2.](image-url)
6.4. Mean sea level (MSL) calculation

6.4.1. Mean sea level (MSL) calculation of reference time serie

The global mean level of the oceans is one of the most important indicators of climate change. Precise monitoring of changes in the mean level of the oceans, particularly through the use of altimetry satellites, is vitally important, for understanding not just the climate but also the socioeconomic consequences of any rise in sea level. Thanks to the T/P, Jason-1 and now Jason-2 altimetry missions, the global MSL has been calculated on a continual basis since January 1993 (figure 50) highlighting a trend of 3.28 mm/yr (see http://www.aviso.oceanobs.com/msl). Notice that the global isostatic adjustment (-0.3 mm/yr, [31]) is applied. We replaced Jason-1 by Jason-2 in the MSL time data series at Jason-2 cycle 11 (October 2008) applying a SSH bias between both missions of -7.46 cm as calculated previously. To calculate a precise MSL rate, it is essential to link accurately time data series together. Recent study ([1]) showed the uncertainty on the global MSL trend resulting from the impact of MSL bias uncertainties between TOPEX-A and TOPEX-B (due to altimeter change in February 1999) and between TOPEX-B and Jason-1 (in May 2002) is close to 0.2 mm/yr from 1993 onwards. As we showed just previously, the SSH consistency between Jason-1 and Jason-2 is very good in space and stable in time, the SSH bias uncertainty is consequently very weak and close to 0.5 mm. It is lower than between T/P and Jason-1 (estimated close to 1 mm ([1])). Its impact on global MSL trend error budget is thus very weak: lower than 0.05 mm/yr.

Figure 50: MSL evolution calculated from T/P, Jason-1 and using Jason-2 data from october 2008.

6.4.2. Regional and global mean sea level trend for Jason-2

Although, 2 years of Jason-2 is a quite short time period for MSL trend calculation, it is possible to compute a MSL trend. Nevertheless, slope values are to be taken with caution. Slope values for Jason-2 and Jason-1 are quite similar (3.5/3.6 mm/year) when computed over the same period and using ECMWF model for wet tropospheric correction (left side of figure 51). Using radiometer wet troposphere correction (AMR) modifies Jason-2 MSL slope to 3.1 mm/year.
Separating in ascending and descending passes, reveals slope differences of about 0.4 mm/year. This allows to evidence potential dependencies with orbit calculation.

Figure 51: Global MSL trend evolution calculated for Jason-2 and Jason-1 over Jason-2 period (left). MSL trend evolution when separating in ascending and descending passes (right). GIA correction is not applied.

The regional MSL trends over Jason-2 period (figure 52) shows an increase in eastern tropical pacific and a decrease in western tropical pacific. This is probably strongly influenced by the El Nino conditions which occurred mid 2009 till begin 2010 ([42]).

Figure 52: Maps of regional MSL slopes for Jason-2 and Jason-1, seasonal signal removed.
7. Particular Investigations

This sections contains some investigations led on Jason-2 data, such as on the low signal tracking anomaly, on testing the use of MQE threshold for Jason-2 1 Hz compression and an analysis of high frequency spectrums.

7.1. Low signal tracking anomaly (AGC anomaly)

During SGT and also Median tracking mode, Jason-2 altimeter could track during several minutes low signal echoes with "Brown like" but "distorted" shape (see [15]). This concerned less than 0.5% of ocean measurements. An example of waveforms during such an anomaly is visible in [37]. This anomaly was especially noticeable over ocean. These measurements were edited by several parameters out of threshold: mispointing, backscattering coefficient, significant wave height. They also showed a drop in AGC (automatic gain control). These anomalies were called "low signal tracking anomaly" or "AGC anomaly". An example of low signal tracking anomaly is shown in figure 53.

Figure 53: Example of low signal tracking anomaly for pass 134, Jason-2 cycle 0. Several parameters are shown: AGC (top left), apparent squared mispointing (top right), Sigma0 (bottom left), and SWH (bottom right). Period of anomaly colored.
Low signal tracking anomaly were especially severe (several tens of minutes) during SGT mode, they were shorter in median mode (at worst a couple of minutes) and never appeared during DEM modes. During cycle 16, on 10th of December 2008, a correction for the low signal tracking anomaly (AGC anomaly) was uploaded (during pass 73). Till cycle 16, pass 70 AGC anomalies were still detected, biggest one (lasting approximately 2 minutes) on the transition Africa/Indian ocean (pass 5). But no further AGC anomaly (on ocean) has occurred since the upload of the correction. The correction for the low signal tracking anomaly consists in more strict criteria for acquisition (to avoid that low signal echoes are tracked). This has no impact for the quantity of ocean measurements as shown on figure 54 where cycle 15 (before upload of correction for low signal tracking anomaly) and 18 (after upload of correction) show equivalent number of measurements. But number of tracked measurements over land has decreased (see figure 55 and 56).

Figure 54: Percentage of available measurements over ocean for Jason-2 cycle 15 (left) and 18 (right).

Figure 55: Percentage of available measurements over land for Jason-2 cycle 15 (left) and 18 (right).
7.2. Study applying MQE threshold during 1 Hz compression

Maps of Jason-1 and Jason-2 differences (after interpolation on theoretical track) have shown regional differences around Indonesia especially for C-band parameters (number of elementary range measurements (figure 23), significant wave height (figure 34), which seems to be correlated with MQE (Mean quadratic error) values (figure 57).

This is supposed to be due to the fact that for Jason-2 1-Hz compression, no threshold is used on MQE. This choice was made, since threshold from Jason-1 was not applicable to Jason-2 (it eliminates too much measurements).

This hypothesis was verified for Jason-2 Igdr cycle 10 by a study, using the following thresholds for MQE during compression: 0.0171 for Ku-band, and 0.1559 for C-band. These values correspond to 3 sigma (see figure 58).

The following parameters were therefore recomputed for Ku- and C-band: range, number and rms of elementary range measurements, significant wave height, rms of 20 Hz significant wave height measurements, backscattering coefficient, number and rms of 20 Hz backscattering coefficient. Dual-frequency ionospheric correction was recomputed using new range and (old) sea state bias.

Only a simple editing procedure was used, based on threshold editing, to keep valid measurements. In the following, residus differences (JA1-JA2) are shown for Jason-2 cycle 10 (Jason-1 cycle 249). These are differences of Jason-1 and Jason-2 measurements after interpolation on theoretical ground pass (as real ground passes of both satellites may deviate up to ±1km from theoretical ground pass).
On the left side figures difference is made using variables from original Jason-2 products. On the right side Jason-2 variables were recomputed using the MQE threshold.

7.2.1. Ku - C band range difference

MQE threshold changes only slightly the bias of Ku - C-band range differences between Jason-1 and Jason-2. It goes from -4.75 cm (without MQE threshold) to -4.60 cm (with MQE threshold). Nevertheless the differences visible in Mediterranean Sea, around Indonesia and in the Gulf of Mexico seem to be attenuated.
7.2.2. Number of elementary C-band range measurements

Comparing elementary number of 20Hz C-band range measurements showed a mean bias of 0.2 counts, meaning that number of 20Hz C-band range measurements are in average lower for Jason-1 than for Jason-2, as some elementary measurements were eliminated by MQE threshold criterion active for Jason-1. Differences are especially visible for regions with high MQE values, as Mediterranean Sea and around Indonesia (left side of figure 60). Using also a MQE threshold for Jason-2, eliminates elementary 20 Hz C-band range measurements for Jason-2, so in average between the two satellites there is only a difference of 0.02 count. The large differences in high MQE regions have also disappeared (right side of figure 60).

Figure 59: Map showing mean of JA1-JA2 residus difference of Ku-band - C-band range difference. Left: original JA2 product, right recomputed JA2.

Figure 60: Map showing mean of JA1-JA2 residus difference of number of elementary C-band range measurements. Left: original JA2 product, right recomputed JA2.
7.2.3. C-band significant wave height

Using MQE threshold for Jason-2 increases the global bias of C-band SWH between Jason-1 and Jason-2 from -0.8 cm to -3.5 cm, but local biases are reduced.

Figure 61: Map showing mean of JA1-JA2 residus difference of C-band significant wave height. Left: original JA2 product, right recomputed JA2.

The following table reminds the value around which the maps are centered.

<table>
<thead>
<tr>
<th>parameter</th>
<th>JA1-JA2 mean (product)</th>
<th>JA1-JA2 mean (JA2 recomputed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWH Ku</td>
<td>-1.36 cm</td>
<td>-1.521 cm</td>
</tr>
<tr>
<td>SWH C</td>
<td>-0.760 cm</td>
<td>-3.51 cm</td>
</tr>
<tr>
<td>Rms of 20 Hz SWH Ku</td>
<td>0.146 cm</td>
<td>0.149 cm</td>
</tr>
<tr>
<td>Rms of 20 Hz SWH C</td>
<td>0.809 cm</td>
<td>0.803 cm</td>
</tr>
<tr>
<td>Rms of 20hz Ku range</td>
<td>-0.011 cm</td>
<td>-0.006 cm</td>
</tr>
<tr>
<td>Rms of 20hz C range</td>
<td>-0.003 cm</td>
<td>0.031 cm</td>
</tr>
<tr>
<td>Nb of 20hz Ku range</td>
<td>-0.117</td>
<td>-0.088</td>
</tr>
<tr>
<td>Nb of 20hz C range</td>
<td>-0.231</td>
<td>-0.020</td>
</tr>
<tr>
<td>altimeter ionosphere</td>
<td>-0.860</td>
<td>-0.835</td>
</tr>
</tbody>
</table>

7.2.4. Conclusion
The lack of MQE threshold on Jason-2 explains the local differences visible in Jason-1 - Jason-2 residus differences for number of elementary C-band range and C-band significant wave height. More detailed studies on MQE threshold can be found at [39].
7.3. AMR incident during cycle 19

During cycle 19, brightness temperatures and radiometer wet troposphere correction were at default values two times:

- from 2009-01-07 11:00:35 to 2009-01-08 03:23:34 impacting passes 24 to 42
- from 2009-01-11 03:56:38 to 2009-01-12 19:26:14 impacting passes 119 to 161

The first time brightness temperatures went to default values on pass 24 at land/ocean transition, the second time on pass 119 over pacific ocean (figure 62). Both times, brightness temperatures did not show any anomaly before going to default values, as visible on figure 63, where Jason-2 and Jason-1 34 GHz brightness temperature are shown.

![34 GHz Brightness temperature JA2 cycle 019, passes 024 and 119](image)

Figure 62: Map of 34 GHz brightness temperature for Jason-2 cycle 19 showing location of passes 24 and 119 (passes where incidents started).

Note that the unavailability of AMR has also a small impact on editing of measurements, other than radiometer wet troposphere correction. Indeed, ice flag also uses brightness temperatures. When they are at default value, a backup is used (based on climatological data). This backup is the same ice flag as used in GDRs version "b" of Jason-1 data. It has the drawback to never detect ice in the far left side of Hudson bay. During the passes with brightness temperatures at default value, ice flag does not detect ice in the far left side of Hudson bay (see figure 64). Nevertheless, these measurements - due to their non-ocean waveforms - are edited by other criteria, such as number of elementary 20 Hz measurements, backscattering coefficient, ocean tide, orbit minus range, Therefore for cycle 19, percentage of edited measurements is higher than usual for several threshold criteria (see section 3.2.).
Figure 63: 34 GHz brightness temperature for Jason-2 in red and black (and Jason-1 in blue) cycle 19 along passes 24 (left) and 119 (right).

Figure 64: Map of 34 GHz brightness temperature (left) and map of ice flag (right) in Hudson bay for Jason-2 cycle 19.
7.4. Exemple of good detection by radiometer of meso-scale atmospheric structure

The altimeter measurements have to be corrected by the wet path delay caused by liquid water and water vapour content in the atmosphere. Therefore, the Advanced Microwave Radiometer is a payload of Jason-2 satellite. In absence of radiometer measurements, model outputs, such as ECMWF model, can be used. Besides regional and global biases between radiometer and model wet troposphere corrections, differences might also occur when atmospheric structures are poorly detected by models.

Sometimes, as for passes 102 and 172 of Jason-2 cycle 056 (see top of figure 65), radiometer - ECMWF model wet troposphere correction difference becomes quite large, reaching up to 20 cm. Bottom panel of figure 65 shows that radiometer wet troposphere correction is in both cases locally wetter than ECMWF wet troposphere correction. Enhanced radiometer wet troposphere correction (which uses improved algorithms for coastal path delays (< 25 km from land), from ftp://podaac.jpl.nasa.gov/pub/sea_surface_height/ostm/preview/AMR/doc/AMR_EXP_README_TXT.txt) shows similar results.

Using 3-hourly precipitation products (3B42 from http://disc2.nascom.nasa.gov/Giovanni/tovas/) covering the period of pass 102 and 172, shows that in both cases precipitation occurred beneath the satellite track (see figure 66). Concerning pass 102, the model also observes the wet region, but not as strong as the radiometer. Concerning pass 172, the model localizes the wet area slightly away. The period when these wet events occur (close to 03h or 06h) is not favourable for the model, as its analysis times are 00h, 06h, 12h, and 18h.

<table>
<thead>
<tr>
<th>period of pass</th>
<th>period of precipitation map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle 056, pass 102</td>
<td>12-01-2010 from 08:36:43 to 09:32:55</td>
</tr>
<tr>
<td>Cycle 056, pass 172</td>
<td>15-01-2010 from 02:11:45 to 03:07:57</td>
</tr>
<tr>
<td>Cycle 056, pass 102</td>
<td>12-01-2010 from 07h30 to 10h30</td>
</tr>
<tr>
<td>Cycle 056, pass 172</td>
<td>15-01-2010 from 00h30 to 04h30</td>
</tr>
</tbody>
</table>

The data used in this study were acquired using the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) as part of the NASA’s Goddard Earth Sciences (GES) Data and Information Services Center (DISC).

2The data used in this study were acquired using the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) as part of the NASA’s Goddard Earth Sciences (GES) Data and Information Services Center (DISC).
Jason-2 validation and cross calibration activities

Figure 65: Monitoring of along-track radiometer - ECMWF model wet troposphere correction (top) for passes 102 (left) and 172 (right). Monitoring of along-track radiometer and ECMWF model wet troposphere correction (bottom).

Figure 66: Maps of 3h precipitation (TRMM and Other Data Precipitation Data Set 3B42) with radiometer wet troposphere path delay superposed for 12/01/2010 09h (left) and 15/01/2010 03h (right).
7.5. Impact of different orbit solutions on mean SSH differences at crossovers

POE orbit solution from several production centers (CNES, JPL, GSFC), using different technics, are tested for Jason-2 data (resumed in table 7) in order to study the impact on mean SSH differences at ascending/descending crossovers. Figure 67 shows maps of SSH differences at crossovers for different orbit solutions.

<table>
<thead>
<tr>
<th>Orbit</th>
<th>Type</th>
<th>Cycles used for cartography (figure 67)</th>
</tr>
</thead>
<tbody>
<tr>
<td>POE from GDR product</td>
<td>using Doris, GPS and laser</td>
<td>1 to 40</td>
</tr>
<tr>
<td>CNES.g_std040 (see [10])</td>
<td>GPS only standard dynamic</td>
<td>1 to 40</td>
</tr>
<tr>
<td>CNES.g_dynred (see [10])</td>
<td>GPS only reduced dynamic</td>
<td>1 to 32</td>
</tr>
<tr>
<td>CNES_dor_niv0 (see [10])</td>
<td>Doris only</td>
<td>1 to 40</td>
</tr>
<tr>
<td>JPL_rlse09a (see [4])</td>
<td>GPS only reduced dynamic</td>
<td>1 to 40</td>
</tr>
<tr>
<td>GSFC.ld_std0905 (see [3])</td>
<td>Doris + Laser</td>
<td>1 to 20</td>
</tr>
</tbody>
</table>

Table 7: Used orbits

Orbits of Jason-2 GDR products are fully compliant with requirement. Nevertheless, small geographical correlated patterns of amplitudes up to ± 2 cm (positive in North-Atlantic, negative in South-Atlantic) are visible on maps of mean SSH differences at crossovers (see top left of figure 67). Using reduced dynamic GPS only orbits reduces these small geographical correlated pattern, especially for JPL orbit (see middle left and right of figure 67). The map highlights only a small hemispheric signal lower than 1 cm between northern and southern hemisphere, which disappears when correcting for pseudo datation bias (-0.28ms).

Figure 68 (top) shows temporal evolution of mean SSH differences at crossovers. It highlights a 120 day signal (related to β' angle) for GDR and CNES GPS only orbits, whereas JPL GPS (09a) only orbits are more stable in time. Bottom figure shows differences of SSH variances (test orbit variance - GDR orbit variance). Negative values indicate a variance reduction (hence an improvement) of the test orbit in comparison to the GDR product orbit. GSFC ld_std0905 orbit shows rather a degradation versus GDR product orbit. CNES Doris orbits as well as CNES GPS dynamic orbits (std040) show similar performances as GDR product orbit. GPS reduced dynamics orbits such as CNES dynred and JPL 09A show a clear improvement. This is related to the fact that reduced-dynamic orbits are less sensitive to dynamic modeling errors (but they are more sensitive to measurement errors), see [10]. Nevertheless, since late 2009 JPL GPS 10a solution has rather the same level of variance as GDR orbit. This is under investigation on POD groups side. Possible reasons (such as a GPS receiver software change on 16 december 2009) are given in [5].
Figure 67: Map of mean of SSH crossovers differences for Jason-2 using POE from GDR product (top left), CNES GPS only standard dynamic POE (top right), CNES GPS only reduced dynamic POE (middle left), JPL GPS only reduced dynamic POE (middle right), GSFC Laser/Doris POE (bottom left), CNES Doris POE (bottom right). Data cover Jason-2 cycles 1 to 40, except for CNES GPS reduced dynamic POE, which covers cycles 1 to 32 and CNES DORIS only orbit, which covers cycles 1 to 20.
Figure 68: Cyclic monitoring of mean SSH differences at crossovers for Jason-2 using different POEs (top). Cyclic monitoring of differences of SSH variances at crossovers for Jason-2 using different POEs (bottom) (variance(SSH using test POE) - variance (SSH using GDR POE)).
7.6. Comparison between ITRF2005 and 2008 solutions for Jason-1 and Jason-2 orbits

Currently, POE available in GDR products uses ITRF2005 (international terrestrial reference frame). In the future, POE might use ITRF2008. CNES has produced 2 datasets of Jason-1 and Jason-2 POE orbits using Doris (Doppler Orbitography and Radiopositioning Integrated by Satellite) and SLR (Satellite Laser ranging) technics over a period of 70 cycles. Normally, for GDRs a tri-technic orbit is used (Doris, Laser and GPS). But as Jason-1 GPS receiver had reduced availability since August 2006 and finally failed to operate properly in April 2009, only Doris and Laser technics were used, in order to have a homogeneous timeserie. One set used ITRF2005, the other ITRF2008. Some results of orbit comparison can be found in [13]. In particular, [13] precises, that only the position and velocity coordinates of the DORIS and SLR stations differ between the ITRF2005 and ITRF2008 orbit solutions: the same stations and the same measurements are considered in the comparison. Hereafter, the 2 datasets are compared for Jason-1 and Jason-2 (see cycle numbers in table 8), in order to analyse the impact of the ITRF change on the sea surface height.

<table>
<thead>
<tr>
<th>Mission</th>
<th>Orbit Type</th>
<th>ITRF</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jason-1</td>
<td>DL_ITRF2005</td>
<td>Doris/Laser ITRF2005</td>
<td>001 - 020, 100 - 120, 200 - 220, 300 - 310</td>
</tr>
<tr>
<td>Jason-1</td>
<td>DL_ITRF2005</td>
<td>Doris/Laser ITRF2008</td>
<td>001 - 020, 100 - 120, 200 - 220, 300 - 310</td>
</tr>
<tr>
<td>Jason-2</td>
<td>DL_ITRF2005</td>
<td>Doris/Laser ITRF2005</td>
<td>001 - 068</td>
</tr>
<tr>
<td>Jason-2</td>
<td>DL_ITRF2005</td>
<td>Doris/Laser ITRF2008</td>
<td>001 - 068</td>
</tr>
</tbody>
</table>

Table 8: Overview of orbit types and cycle numbers used.

Mean of orbit differences (see figure 69) shows an expected north/south bias of about ± 5 mm for Jason-2 and about ± 3 mm for Jason-1. This difference might be related to different coverage of Doris network for Jason-1 and Jason-2, as well as different handling of SAA (South Atlantic Anomaly) stations.

![Mean of orbit differences (ITRF2008 - ITRF 2005) for Jason-1 (left) and Jason-2 (right).](image-url)
Cyclic monitoring of differences of SLA variances (SLA variance using ITRF2008 orbit - SLA variance using ITRF2005 orbit) reveals an annual signal (see figure 70). It is especially well visible for Jason-2, as the study uses an uninterrupted time-series. This annual signal is not yet understood.

Using either ITRF2005 or ITRF2008 orbit seems to have for Jason-1 no impact on performances of SSH differences at crossover points (see figure 71). Concerning Jason-2 a slight degradation seems to be visible. Nevertheless, the values are quite small and therefore not significant.

Changes of ITRF version have generally an impact on MSL trend, when separating in northern and southern hemisphere. This was the case, when ITRF version changed from 2000 to 2005 (see [43]). Nevertheless, ITRF change from version 2005 to 2008 will have a very weak impact on North/South MSL trend, as shown on figure 72. MSL trend of northern or southern hemispheres are different, but using ITRF2005 or 2008 has no significant impact on the trends. Note that values from MSL trends of this study will not be the final values, as firstly the studied time series are shorter than 2 years and are even interrupted for Jason-1. It is therefore difficult to adjust annual
signals. Indeed, theoretical errors of the computation method are quite high, especially for the short Jason-2 period (about 1 mm/year). Secondly, the final orbits will include also GPS technic (in addition to DORIS and SLR technics).

Figure 72: Southern and northern hemisphere MSL trend using orbits based on ITRF2005 and ITRF2008 for Jason-1 (left) and Jason-2 (right). Annual and semi-annual signals are adjusted from combined Topex/Poseidon and Jason-1 time series.
8. Outlook on GDRC content

Up to now, Jason-2 GDR’s are delivered in version T for test, as during Seattle OSTST meeting (2009), several points were raised which had to be addressed before a release in GDR version C is possible. Nevertheless, Jason-2 GDR version T is already quite similar to GDR version C of Jason-1. Before Lisbon (2010) OSTST meeting, cycles 64 to 66 were reprocessed in GDR version C on the project level (the data were not disseminated to the users) and the results presented at the Lisbon OSTST meeting (see [33]).

The evolutions taken into account for GDR version C were:

- New J2 AMR processing (coastal area + new flags) and updates to work around the 34 GHz VFC anomaly
- Use of a null mispointing value in input of the C band retracking algorithm
- Use of LTM information filtered over 7 days
- New tide model (GOT00.2 → GOT 4.7)
- Polar tide anomaly correction
- Long period non equilibrium tide anomaly correction
- Some complementary evolutions (specifications updates + typos in the products +)
- Update of the altimeter characterisation file (no truncation of the PRF value, antenna aperture angle at 1.29 deg instead of 1.26 deg, MQE setting, ...)

Following Lisbon OSTST meeting, it was decided that the following modifications/additions to the previous list will also be implemented:

- Ocean tide model will rather be GOT4.8 or GOT4.9 than GOT4.7
- an expert group will decide which type of sea state bias will be implemented (based on MLE3 or MLE4 output)
- Due to recent studies on CNES side, the reason of the empirical pseudo datation bias (to correct for the hemispheric bias at crossovers) ([6]), as well as for the absolute bias were understood. The Jason-2 GDR version C will therefore be corrected for these biases.

Reprocessing in GDR version C is scheduled to start in 2011.
9. Conclusion

Jason-2 is in orbit since 20th of June, 2008. During the flight formation phase, which lasted 20 cycles (till 2009-01-26), Jason-2 flew with Jason-1 (55s apart) over the same historical TOPEX/Poseidon ground track. This allowed extensive verification and validation of the data, as both satellites observed the same geophysical phenomena. OGDR and IGDR data quality was already approved during OSTST 2008 meeting in Nice. OGDR products were distributed to users since mid-December 2008 and IGDR since mid-January 2009. The GDR production started end of February 2009 and was released to users since August 2009. More than 2 years of GDR data are now available.

The flight formation phase has shown that Jason-2 data quality is excellent, at least of the same order as the Jason-1 one. The raw data coverage is similar to Jason-1's over ocean and improved in coastal areas. Thanks to the new altimeter tracking modes, the availability of land measurements is significantly improved. Over ocean, the valid data coverage is similar since the additional Jason-2 raw measurements are removed by the editing procedure. The additional measurements in coastal areas and over rivers and lakes benefit to projects such as PISTACH.

The altimetric parameter analysis has shown a similar behavior compared to Jason-1. Some biases exist as between dual-frequency ionosphere correction, but they are stable. Though Jason-2 radiometer performances are improved especially near coasts, potential stability problems are observed in Jason-2 IGDR product (small jumps (versus JMR) occurred in 34 GHz channel). These potential stability problems are corrected thanks to new ARCS system applied for GDR. Nevertheless these corrections introduce sometimes small jumps (for example at cycle 069) and might miss real geophysical evolutions.

The SSH performances analyzed at crossovers or along-track highlight similar performances between Jason-1 and Jason-2. The consistency between both SLA is remarkable with a small hemispheric signal lower than 0.5 cm. This signal is removed using GSFC orbits proving the sensibility of the orbit calculation for the detection of geographically correlated biases. The fact that several production centers (CNES, JPL, GSFC) compute different kinds (tritechnic, GPS only, Doris+SRL) of Jason-2 precise orbit solutions, gives also a great opportunity to understand more about the impact of orbit on altimetry data and to explain some of the observed signals.

The flight formation phase between Jason-1 and Jason-2 allowed us to check accurately the Jason-2 mission. As during the Jason-1/TOPEX flight formation phase, we also learned a lot from Jason-1 measurement quality. To balance all these excellent results and especially the quasi-perfect SSH consistency between both missions, both systems can contain similar errors undetectable with the analyzes performed here. Comparisons with external and independent datasets (Tide gauges, Temperature/Salinity profiles, ...) are thus essential to detect potential errors.

The more of 2 years of Jason-2 data show excellent quality. Scientific studies and operational applications therefore benefit from the combination of Jason-2, Jason-1, and Envisat data. In order to adress the demands of the scientific community raised during 2009 OSTST meeting, a reprocessing of the whole Jason-2 mission is scheduled for 2011.
10. References

References

Jason-2 validation and cross calibration activities

11. Annex

This annex contains posters presented at OSTST meeting in 2010.

11.1. Poster presented at OSTST meeting in 2010

The following posters, presented at OSTST meeting 2010 in Lisbon (Portugal), are also available on Aviso web-site: http://www.aviso.oceanobs.com/en/courses/ostst/ostst-2010/index.html.
Jason-2 validation and cross calibration activities

CLS, Space Oceanography Division, Toulouse, France
CNES, Centre National d’Etudes Spatiales, Toulouse, France

Figure 73: Poster presented at OSTST meeting, Lisbon 2010

CLS - 8-10 Rue Hermès - Parc Technologique du Canal - 31520 Ramonville St-Agne - FRANCE
Telephone 33 5 61 39 47 00 / Fax 33 5 61 75 10 14
This study concerns global data quality assessment of the Jason-1 (JA1) altimetry system, from all GDR products available to date (GDR-C release, beginning of 2010). The Jason-2 (JA2) satellite altimetry mission, the global mean sea level (MSL) has been calculated on a continuous basis since January 1993, which results in a 3.26 mm/year global trend (see Figures 8 and 9, GLA applied). The cyclic monitoring shows a small drift (see Figure 6). The high value (> 6 cm) of cycle 315, is related to fuel depletion maneuvers, as indicated on both Jason-1 and Jason-2 at the beginning of 2010, around cycle 300 (see Figure 15), which causes discrepancies in MSL trend when separating ascending and descending passes. During JA2 period, both satellites show similar results, though JA1 is more impacted by 120 days signals. Nevertheless, this signal is strongly reduced for JA2, due to the numerous maneuvers, orbit is an assembled MOE, instead of POE. The cyclic monitoring of mean of SSH differences at crossovers shows a small drift (see Figure 5), which causes discrepancies in MSL trend when separating ascending and descending passes. During 242 period, both satellites show similar results, though JA2 is less impacted by 120 days signals. Nevertheless, this signal is strongly reduced for JA2, during the 242 period. The cyclic monitoring shows a small drift (see Figure 5), which causes discrepancies in MSL trend when separating ascending and descending passes. During 242 period, both satellites show similar results, though JA2 is less impacted by 120 days signals. Nevertheless, this signal is strongly reduced for JA2, due to the numerous maneuvers, orbit is an assembled MOE, instead of POE. The cyclic monitoring of mean of SSH differences at crossovers shows a small drift (see Figure 5), which causes discrepancies in MSL trend when separating ascending and descending passes. During 242 period, both satellites show similar results, though JA2 is less impacted by 120 days signals. Nevertheless, this signal is strongly reduced for JA2, due to the numerous maneuvers, orbit is an assembled MOE, instead of POE. The cyclic monitoring of mean of SSH differences at crossovers shows a small drift (see Figure 5), which causes discrepancies in MSL trend when separating ascending and descending passes. During 242 period, both satellites show similar results, though JA2 is less impacted by 120 days signals. Nevertheless, this signal is strongly reduced for JA2, due to the numerous maneuvers, orbit is an assembled MOE, instead of POE.