Chronology Issues:

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Reason for change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2016/05/20</td>
<td>Creation of the document</td>
</tr>
<tr>
<td>1.1</td>
<td>2016/09/10</td>
<td>EUMETSAT inputs taken into account</td>
</tr>
<tr>
<td>1.2</td>
<td>2016/12/08</td>
<td>EUMETSAT inputs taken into account</td>
</tr>
<tr>
<td>1.3</td>
<td>2017/01/16</td>
<td>Start period of L2P STC products added</td>
</tr>
</tbody>
</table>
List of Acronyms:

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATBD</td>
<td>Algorithm Theoretical Baseline Document</td>
</tr>
<tr>
<td>ATP</td>
<td>Along Track Product</td>
</tr>
<tr>
<td>Aviso+</td>
<td>Archiving, Validation and Interpretation of Satellite Oceanographic data</td>
</tr>
<tr>
<td>CLS</td>
<td>Collecte, Localisation, Satellites</td>
</tr>
<tr>
<td>CMA</td>
<td>Centre Multimissions Altimetriques</td>
</tr>
<tr>
<td>Cnes</td>
<td>Centre National d’Etudes Spatiales</td>
</tr>
<tr>
<td>ECMWF</td>
<td>European Centre for Medium-range Weather Forecasting</td>
</tr>
<tr>
<td>EUMETSAT</td>
<td>European Organisation for the Exploitation of Meteorological Satellites</td>
</tr>
<tr>
<td>GDR</td>
<td>Geophysical Data Record(s)</td>
</tr>
<tr>
<td>GOT</td>
<td>Global Ocean Tides</td>
</tr>
<tr>
<td>IB</td>
<td>Inverse Barometer</td>
</tr>
<tr>
<td>IGDR</td>
<td>Interim Geophysical Data Record(s)</td>
</tr>
<tr>
<td>LWE</td>
<td>Large Wavelength Error</td>
</tr>
<tr>
<td>L2P</td>
<td>Level-2+ product: global 1 Hz along-track data (sea level anomaly, its components and validity flag) over marine surfaces based on Level-2 products</td>
</tr>
<tr>
<td>MSS</td>
<td>Mean Sea Surface</td>
</tr>
<tr>
<td>MWR</td>
<td>Microwave Radiometer</td>
</tr>
<tr>
<td>Nasa</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NRT</td>
<td>Near Real Time (48/72h)</td>
</tr>
<tr>
<td>OER</td>
<td>Orbit Error Reduction</td>
</tr>
<tr>
<td>OSDR</td>
<td>Operational Sensor Data Records</td>
</tr>
<tr>
<td>POE</td>
<td>Precise Orbit Ephemeris</td>
</tr>
<tr>
<td>RD</td>
<td>Reference Document</td>
</tr>
<tr>
<td>RT</td>
<td>Real Time (<10h)</td>
</tr>
<tr>
<td>Ssalto</td>
<td>Segment Sol multimissions d’ALTimétrie, d’Orbitographie et de localisation précise.</td>
</tr>
<tr>
<td>SLA</td>
<td>Sea Level Anomaly</td>
</tr>
<tr>
<td>SSB</td>
<td>Sea State Bias</td>
</tr>
<tr>
<td>SSH</td>
<td>Sea Surface Height</td>
</tr>
<tr>
<td>TAI</td>
<td>IAT - International Atomic Time</td>
</tr>
<tr>
<td>TMR</td>
<td>Topex Microwave Radiometer</td>
</tr>
<tr>
<td>T/P</td>
<td>Topex/Poseidon</td>
</tr>
<tr>
<td>UTC</td>
<td>Universal Time Coordinated</td>
</tr>
</tbody>
</table>
List of tables and figures

List of tables:

Table 1. Sentinel-3A timeliness Input data overview. 5
Table 2. Sentinel-3A Reference corrections overview (in pink same standards as L2 products, in green standards updated in L2P products) 6
Table 3. Editing thresholds for each parameter for NTC, NRT and STC timeliness 7
Table 4. Number of Sentinel-3A files delivered for each timeliness 9
Table 5. Temporal availability of LP2 Sentinel-3A products. 10
Table 6. Overview of data handling variables in L2P NetCDF file. 12

List of figures:

Figure 1. Altimetry principle 2
Figure 2. Processing steps of the system 4
Applicable documents / reference documents

Reference: SALP-BC-S3_COP-OP-16778-CN v1.0

Bibliography

ocean with enhanced accuracy in shallow seas and in the Arctic region, OSTST2015:
http://meetings.aviso.altimetry.fr/fileadmin/user_upload/tx_ausycleremonium/files/29Red1100-
2_ppt_OSTST2014_FES2014_CLC.pdf

Carrère, L. and F. Lyard, 2003: Modeling the barotropic response of the global ocean to atmospheric
wind and pressure forcing - comparison with observations, Geophys. Res. Lett., 30(6), 1275.

Soc., 33, 253-264.

Dorandeu, J., M. Ablain, Y. Faugère, B. Soussi, and P. Vincent, 2004 : Jason-1 global statistical
evaluation and performance assessment. Calibration and cross-calibration results. Marine Geodesy,
27, 345-372.

Gaspar, P., S. Labroue and F. Ogor. Improving nonparametric estimates of the sea state bias in
radar altimeter measurements of seal level, J. Atmos. Oceanic Technology, 19, 1690-1707,
October 2002.

Gaspar, P., F. Ogor and C. Escoubes, Nouvelles calibration et analyse du biais d'etat de mer des
alimetres TOPEX et POSEIDON. Technical note 96/018 of CNES Contract 95/1523, 1996.

Gaspar, P., and F. Ogor, Estimation and analysis of the Sea State Bias of the new ERS-1 and ERS-2

Guibbaud, M., A. Ollivier and M. Ablain, A new approach for dual-frequency ionospheric correction
filtering, ENVISAT Altimetry Quality Working Group (QWG), 2015 available in the Section 8.5 of the
2012 Envisat annual activity report:
n_2012.pdf

Moyenne Océanique : Support scientifique à la mission altimétrique Jason-1, et à une mission micro-
CLS/DOSS/NT/00.313, 40 pp. CLS Ramonville St Agne.

Iijima, B.A., I.L. Harris, C.M. Ho, U.J. Lindqwiste, A.J. Mannucci, X. Pi, M.J. Reyes, L.C. Sparks,
B.D. Wilson, 1999: Automated daily process for global ionospheric total electron content maps and
satellite ocean altimeter ionospheric calibration based on Global Positioning System data, J. Atmos.
Solar-Terrestrial Physics, 61, 16, 1205-1218

Labroue, S., P. Gaspar, J. Dorandeu, O.Z. Zanifé, F. Mertz, P. Vincent, and D. Choquet, 2004 : Non
parametric estimates of the sea state bias for Jason-1 radar altimeter. Marine Geodesy 27, 453-
481.

Labroue, S., 2007: RA2 ocean and MWR measurement long term monitoring, 2007 report for WP3,
Task 2 - SSB estimation for RA2 altimeter. Contract 17293/03/l-OL. CLS-DOSS-NT-07-198, 53pp. CLS
Ramonville St. Agne

Contents

1. Introduction ... 1

2. Overview ... 2
 2.1. Altimetry principle ... 2
 2.1.1. Orbits, Passes and Repeat cycle .. 3
 2.2. Sentinel-3 operating mode ... 3

3. Data Processing .. 4
 3.1. Overview ... 4
 3.2. Input Data ... 5
 3.2.1. Level-2 altimeter data .. 5
 3.2.1.1. Dynamic and static auxiliary data .. 5
 3.2.2. Applying altimetric corrections .. 5
 3.2.3. Selecting valid data .. 7
 3.3. Product Generation .. 9

4. Product Presentation .. 10
 4.1. Temporal availability .. 10
 4.2. Nomenclature .. 10

5. Data Format ... 11
 5.1. L2P Format .. 12
 5.1.1. Dimensions ... 12
 5.1.2. Data Handling Variables ... 12
 5.1.2.1. Attributes .. 13
 5.1.2.2. Example of L2P file ... 13

6. Products accessibility .. 19

7. News, updates and reprocessing ... 20
 7.1. Operational news ... 20
 7.2. Updates and reprocessing .. 20

8. Contacts ... 21
1. Introduction

The purpose of this document is to describe products generated by the 1Hz monomission along-track altimeter data processing segment for Sentinel-3A, named along-track L2P products.

The generation of those products is part of the EUMETSAT Sentinel-3 Marine Altimetry L2P/L3 Service. The dissemination of those products is part of the Cnes AVISO-SALP (Service d'Altimétrie et Localisation Précise).

After a description of the input data, a short overview of the processing steps is presented. Then complete information about user products is provided, giving nomenclature, format description, and software routines.
2. Overview

2.1. Altimetry principle

The altimeter measures the ‘Altimeter Range’ which is the distance between the center of mass of satellite to the surface of the Earth (figure 1). This allows computing the ‘Sea Surface Height’ which is the height of the sea surface above the reference ellipsoid. The ‘Satellite Altitude’ refers to the distance of the center of mass of the satellite above a reference point. The reference point will usually be either on the reference ellipsoid or the center of the Earth.

\[
\text{‘Sea Surface Height’} = \text{‘Satellite Altitude’} - \text{‘Altimeter Range’} - \text{‘Corrections’}
\]

The ‘Corrections’ due to environmental conditions need to be applied in order to retrieve the correct ‘Sea Surface Height’. They are listed in Table 2 and depend on the timeliness of the product.

Moreover another variable is often used in altimetry:

\[
\text{‘Sea Level Anomaly’} = \text{‘Sea Surface Height’} - \text{‘Mean Sea Surface’}
\]

The ‘Mean Sea Surface’ is the mean of the sea surface height relative to ellipsoid over 20 years. It is computed on a regular grid and combines the data of all satellites.

The Reference ellipsoid used for Sentinel-3A Along-track L2P product is the first-order definition of the non-spherical shape of Earth with (same as for TOPEX/Poseidon, Jason-1/2/3 series):

- equatorial radius of 6378.1363 kilometers
- flattening coefficient of 1/298.2570000

![Figure 1. Altimetry principle](image-url)
2.1.1. Orbits, Passes and Repeat cycle

‘Orbit’ is one revolution around the Earth by the satellite.

A satellite ‘Pass’ or ‘Track’ is half a revolution of the Earth by the satellite from one extreme latitude to the opposite extreme latitude. Passes with odd numbers correspond to ascending orbits, from minimum to maximum latitude; passes with even numbers correspond to descending orbits, from maximum to minimum latitude.

‘Repeat Cycle’ is the time period that elapses until the satellite flies over the same location again. Every “pass file” of a given cycle (identified by its track number) flies over the same path as the pass file of every other cycle in the same repeat-cycle phase, and covers oceans basins continuously.

The inclination of Sentinel-3A is 98.65 deg.

The passes are numbered from 1 to 770 representing a full repeat cycle of the Sentinel-3A ground track for the repetitive orbit; for Sentinel-3A, a repeat cycle is about 27 days.

2.2. Sentinel-3 operating mode

In the Sentinel-3 SRAL mission, there are two main modes of operation:

- High Resolution Mode, also known as Synthetic Aperture Radar mode (SAR)
- Low Resolution Mode (LRM)

The SRAL mission will normally be operated at High Resolution Mode (commonly called SAR mode). Low Resolution Mode (LRM) will be a back-up mode only.

SAR mode is designed to achieve high along-track resolution over relatively flat surfaces. This property can be exploited to increase the number of independent measurements over a given area and is a prerequisite for sea-ice thickness measurements, coastal waters, ice sheet margins, land and inland waters. The scientific justification of High Resolution Mode 100% coverage over the Earth is also applicable to open ocean surfaces because studies have shown that the best performance of this mode is over open ocean surfaces where topography is homogeneous (areas at least as large as the antenna footprint).

The detailed information can be found in the Sentinel-3 User Handbook:

https://sentinel.esa.int/documents/247904/685236/Sentinel-3_User_Handbook

Note that compared to LRM (on current altimetry missions such as SARAL/AltiKa, Envisat, Jason-1/2/3, ERS-1/2), the antenna footprint is reduced with the SAR technology and the noise on the measurement is reduced.
3. Data Processing

3.1. Overview

The processing steps of the system are overviewed on Figure 2. The L2P products are delivered in Near-Real-Time (NRT), Short Time Critical (STC), Non Time Critical (NTC). The objective is:

- To provide operational applications with directly useable continuous and high quality altimeter data.
- To provide user friendly altimeter database where users can directly access to valid sea level height content without additional processing.
- In Non Time Critical, it is to maintain a consistent and user friendly altimeter database using the state-of-the-art recommendations from altimetry community before the complete reprocessing of L2 products.

![Figure 2. Processing steps of the system](image-url)
3.2. Input Data

3.2.1. Level-2 altimeter data

In order to produce Sentinel-3A Along-track L2P products, the system uses Level-2 Water instrumental measurements (containing Ocean data). Indeed there are different data products associated with the three levels of processing of altimeter data:

- Level-0 (L0) is the raw telemetered data
- Level-1 (L1) is the Level-0 data corrected for instrumental effects
- Level-2 (L2) is the Level-1 data corrected for geophysical effects

Level-2 and level-1 products are available to users via ftp or EUMETCast dissemination. Level-0 products are not available to users and are considered only as inputs to Level-1 processing.

There are different levels of data latency related to the Level-2 availability of the auxiliary or ancillary data as detailed in Table 1:

<table>
<thead>
<tr>
<th>Altimetry product</th>
<th>Source</th>
<th>Availability</th>
<th>Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near Real Time (NRT) Sentinel-3A</td>
<td>EUMETSAT</td>
<td>3 hours</td>
<td>Fast delivery orbit</td>
</tr>
<tr>
<td>Short Time Critical (STC) Sentinel-3A</td>
<td>EUMETSAT</td>
<td>48 hours</td>
<td>Intermediate orbit</td>
</tr>
<tr>
<td>Non Time Critical (NTC) Sentinel-3A</td>
<td>EUMETSAT</td>
<td>30 days</td>
<td>Precise Orbit Determination</td>
</tr>
</tbody>
</table>

Table 1. Sentinel-3A timeliness Input data overview.

3.2.1.1. Dynamic and static auxiliary data

In order to compute the Sea Level Anomaly, various corrections are needed, some of them replace the ones from the L2 input product such as the Mean Sea Surface, the tidal model, The complete description of all the corrections used in the L2P products is given in table 2.

3.2.2. Applying altimetric corrections

Altimetric measurements need to be corrected for instrumental errors, environmental perturbations (wet tropospheric, dry tropospheric and ionospheric effects), the ocean sea state influence (sea state bias), the tide influence (ocean tide, earth tide and pole tide) and atmospheric pressure (combined atmospheric correction : high frequency fluctuations of the sea surface topography and inverted barometer height correction). The detail of these corrections applied is given in table 2.

Note that in Non-Time Critical (NTC) delivery, the products may be delivered in two versions:

- the reference version containing the corrections consistent with the Sentinel-3A products delivered in the frame of the Copernicus Marine Service project. This version will be reprocessed roughly every 3 years.
- an updated version with corrections more up-to-date. This version will be reprocessed more often.
<table>
<thead>
<tr>
<th>Timeliness</th>
<th>Sentinel-3A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit</td>
<td>Navigator (GNSS for baseline and DORIS for backup)*</td>
</tr>
<tr>
<td></td>
<td>MOE*</td>
</tr>
<tr>
<td></td>
<td>POE*</td>
</tr>
<tr>
<td>Dry troposphere</td>
<td>Model computed from ECMWF Gaussian grids</td>
</tr>
<tr>
<td>Wet troposphere</td>
<td>From Sentinel-3A Microwave Radiometer</td>
</tr>
<tr>
<td>Ionosphere</td>
<td>Filtered dual-frequency altimeter range measurements [Guibbaud et al., 2015]</td>
</tr>
<tr>
<td>Sea State Bias</td>
<td>Non parametric SSB [Tran et al., 2012]</td>
</tr>
<tr>
<td>Ocean tide and loading tide</td>
<td>FES2014 [Carrère et al., 2015]</td>
</tr>
<tr>
<td>Solid Earth tide</td>
<td>Elastic response to tidal potential [Cartwright and Tayler, 1971], [Cartwright and Edden, 1973]</td>
</tr>
<tr>
<td>Pole tide</td>
<td>[Wahr, 1985]</td>
</tr>
<tr>
<td></td>
<td>[Desai, 2015]</td>
</tr>
<tr>
<td>Dynamic atmospheric correction</td>
<td>MOG2D High frequencies forced with predicted ECMWF pressure and wind field [Carrere and Lyard, 2003; operational version used, current version is 3.2.0] + inverse barometer Low frequencies</td>
</tr>
<tr>
<td></td>
<td>MOG2D High frequencies forced with analysed+predicted ECMWF pressure and wind field [Carrere and Lyard, 2003; operational version used, current version is 3.2.0] + inverse barometer Low frequencies</td>
</tr>
<tr>
<td></td>
<td>MOG2D High frequencies forced with analysed ECMWF pressure and wind field [Carrere and Lyard, 2003; operational version used, current version is 3.2.0] + inverse barometer Low frequencies</td>
</tr>
<tr>
<td>Mean Sea Surface used</td>
<td>CNES_CLS15 (with reference period of 20 year)</td>
</tr>
</tbody>
</table>

(*) The Reference ellipsoid for Sentinel-3A L2P products has been changed in order to take into account the first-order definition of the non-spherical shape of Earth with (same as for TOPEX/Poseidon, Jason-1/2/3 series): equatorial radius of 6378.1363 kilometers and flattening coefficient of 1/298.257000000

Table 2. Sentinel-3A Reference corrections overview (in pink same standards as L2 products, in green standards updated in L2P products)

Note that other corrections could be applied if needed, such as a datation bias correction. Note that this algorithm is not yet used.
3.2.3. Selecting valid data

The processing starts with quality control and validation of altimetric data and geophysical corrections in order to select valid ocean data. Note the following values of the editing criteria are not yet tuned for Sentinel-3A and will be adjusted later.

Editing criteria are used to select valid measurements over ocean. The editing process is divided into 3 parts as described below:

1/ Editing by flags:
A first step is to select the points where the editing thresholds will be applied. The points where:

- the ice flag is 0 (Ocean) or 5 (not evaluated),
- and the surface_type flag is 0 (Open Sea or Semi-enclosed sea) or 1 (enclosed sea or lake)

are taken into account.

2/ Editing with parameters thresholds:

The editing criteria are defined as minimum and maximum thresholds for altimeter, radiometer and geophysical parameters (Table 3). They are expected to remain constant throughout the mission, so that monitoring the number of edited measurements allows an observation of data quality. Measurements are edited if at least one of the parameters does not lie within those thresholds.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Minimum value</th>
<th>Maximum value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea Surface Height</td>
<td>-130m</td>
<td>100m</td>
</tr>
<tr>
<td>Sea Level Anomaly</td>
<td>-2m</td>
<td>2m</td>
</tr>
<tr>
<td>Standard deviation on the range</td>
<td>0</td>
<td>0.2m</td>
</tr>
<tr>
<td>Nb measurements of range</td>
<td>10</td>
<td>DV</td>
</tr>
<tr>
<td>Dry troposphere correction</td>
<td>-2.5m</td>
<td>-1.9m</td>
</tr>
<tr>
<td>Dynamical Atmospheric correction</td>
<td>-2m</td>
<td>2m</td>
</tr>
<tr>
<td>Wet troposphere correction</td>
<td>-0.5m</td>
<td>-0.001m</td>
</tr>
<tr>
<td>Sea State Bias</td>
<td>-0.5m</td>
<td>0.01m</td>
</tr>
<tr>
<td>Standard deviation of backscatter coefficient</td>
<td>0</td>
<td>0.7 dB if instrument mode is SAR, 1dB otherwise</td>
</tr>
<tr>
<td>Oceanic tide</td>
<td>-5m</td>
<td>5m</td>
</tr>
<tr>
<td>Earth tide</td>
<td>-1m</td>
<td>1m</td>
</tr>
<tr>
<td>Pole tide</td>
<td>-15m</td>
<td>15m</td>
</tr>
</tbody>
</table>

Table 3. Editing thresholds for each parameter for NTC, NRT and STC timeliness
3/ Editing by statistical validation on the track:
A final editing is used in order eliminate the tracks where orbit error can be very high:
For a track with a minimum of 200 points where:

- the bathymetry $<-1000\text{m}$,
- the oceanic variability $<0.1\text{m}$,
- the distance to the coast $>10\text{km}$,
- the latitude is $<66^\circ$.

Then the track is eliminated if one of these criteria is true:

- the mean of Sea Level Anomaly of all the points $>0.15\text{m}$,
- the standard deviation of the Sea Level Anomaly of all the points $> 0.2\text{m}$.
3.3. Product Generation

The ‘Sea Level Anomalies’ as described in section 2.1 are computed with the corrections given in Table 3.

In order to allow the user to compute himself its own ‘Sea Surface Height’ depending on his needs, the corrections used to compute the ‘Sea Level Anomalies’ are present in the output product (see Table 6 for details about the names of variables). This allows computing the raw ‘Sea Surface Height’

Each product will contain one file per pass. The files will be delivered in cycles folders for L2P NTC products. The following table gives the frequency of delivery and the number of files delivered.

<table>
<thead>
<tr>
<th>L2P altimetry output product</th>
<th>Frequency</th>
<th>Number of files delivered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near Real Time (NRT)</td>
<td>Several times a day</td>
<td>28 passes per day (note that several files per pass may be delivered, as L2P files are produced as soon as L2 input files are available)</td>
</tr>
<tr>
<td>Sentinel-3A</td>
<td></td>
<td>28 passes per day (note that generally two L2P STC files (a first very short, later the complete file) are produced for even passes, as the pass splitting in high northern latitudes is slightly different between L2 and L2P data)</td>
</tr>
<tr>
<td>Short Time Critical (STC)</td>
<td>Several times per day</td>
<td>28 passes per day (note that generally two L2P STC files (a first very short, later the complete file) are produced for even passes, as the pass splitting in high northern latitudes is slightly different between L2 and L2P data)</td>
</tr>
<tr>
<td>Sentinel-3A</td>
<td></td>
<td>770</td>
</tr>
<tr>
<td>Non Time Critical (NTC)</td>
<td>Once per cycle (every 27 days)</td>
<td></td>
</tr>
<tr>
<td>Sentinel-3A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Number of Sentinel-3A files delivered for each timeliness
4. Product Presentation

4.1. Temporal availability

<table>
<thead>
<tr>
<th>Mission</th>
<th>Begin date</th>
<th>End date</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRT Sentinel-3A</td>
<td>13-12-2016 (cycle 12)</td>
<td>Ongoing</td>
<td>27-day cycles</td>
</tr>
<tr>
<td>STC Sentinel-3A</td>
<td>12-01-2017 (cycle 13, pass 241)</td>
<td>Ongoing</td>
<td>27-day cycles</td>
</tr>
<tr>
<td>NTC Setninel-3A</td>
<td>TBD (cycle)</td>
<td>Ongoing</td>
<td>27-day cycles</td>
</tr>
</tbody>
</table>

Table 5. Temporal availability of LP2 Sentinel-3A products.

4.2. Nomenclature

This is the generic model of L2P filename is:

```
global_sla_l2p_<data_type>_<mission>_<cycle>_<pass>_<begin_date>_<end_date>_<production_date>.nc
```

The L2P products name components are:
- The type of data (NRT/STC/NTC): <data_type>
- The mission (s3a/s3b): <mission>
- The cycle/pass considered: <cycle>_<pass>
- The begin and end dates of the data: <begin_date>_<end_date>
- The production date: <production_date>

This is a filename example:

```
global_sla_l2p_nrt_s3a_C0006_P0407_20160713T031500_20160713T035759_20160902T175905.nc
```
5. Data Format

This chapter presents the data storage format and convention used for S3 L2P products. All products are distributed in NetCDF with norm CF.

NetCDF (Network Common Data Form) is an open source, generic and multi-platform format developed by Unidata. An exhaustive presentation of NetCDF and additional conventions is available on the following web site:

All basic NetCDF conventions are applied to files.

Additionally the files are based on the attribute data tags defined by the Cooperative Ocean/Atmosphere Research Data Service (COARDS) and Climate Forecast (CF) metadata conventions. The CF convention generalises and extends the COARDS convention but relaxes the COARDS constraints on dimension and order and specifies methods for reducing the size of datasets. A wide range of software is available to write or read NetCDF/CF files. API made available by UNIDATA (http://www.unidata.ucar.edu/software/netcdf):

- C/C++/Fortran
- Java
- MATLAB, Objective-C, Perl, Python, R, Ruby, Tcl/Tk.
5.1. L2P Format

5.1.1. Dimensions

1 Dimension is defined:

- **time**: number of data in current file, sampled at 1Hz.

5.1.2. Data Handling Variables

You will find hereafter the definitions of the variables defined in the product:

<table>
<thead>
<tr>
<th>Name of variable</th>
<th>Type</th>
<th>Content</th>
<th>Unit</th>
<th>Timeliness</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>double</td>
<td>Time of measurements</td>
<td>seconds since 2000-01-01 00:00:00 UTC</td>
<td>all</td>
</tr>
<tr>
<td>latitude</td>
<td>int</td>
<td>Latitude value of measurements</td>
<td>degrees_north</td>
<td>all</td>
</tr>
<tr>
<td>longitude</td>
<td>int</td>
<td>Longitude value of measurements</td>
<td>degrees_east</td>
<td>all</td>
</tr>
<tr>
<td>range</td>
<td>int</td>
<td>Range</td>
<td>meters</td>
<td>all</td>
</tr>
<tr>
<td>altitude</td>
<td>int</td>
<td>Altitude of the satellite</td>
<td>meters</td>
<td>all</td>
</tr>
<tr>
<td>wet_tropospheric_correction</td>
<td>short</td>
<td>Wet tropospheric correction</td>
<td>meters</td>
<td>all</td>
</tr>
<tr>
<td>wet_tropospheric_correction_mode</td>
<td>short</td>
<td>Wet tropospheric correction mode</td>
<td></td>
<td>all</td>
</tr>
<tr>
<td>ionospheric_correction</td>
<td>int</td>
<td>Ionospheric correction</td>
<td>meters</td>
<td>all</td>
</tr>
<tr>
<td>sea_state_bias</td>
<td>short</td>
<td>Sea state bias</td>
<td>meters</td>
<td>all</td>
</tr>
<tr>
<td>solid_earth_tide</td>
<td>short</td>
<td>Solid Earth tide height</td>
<td>meters</td>
<td>all</td>
</tr>
<tr>
<td>pole_tide</td>
<td>short</td>
<td>Pole tide height</td>
<td>meters</td>
<td>all</td>
</tr>
<tr>
<td>dry_tropospheric_correction_model</td>
<td>short</td>
<td>Dry tropospheric correction</td>
<td>meters</td>
<td>all</td>
</tr>
<tr>
<td>dynamic_atmospheric_correction</td>
<td>short</td>
<td>Combined atmospheric correction</td>
<td>meters</td>
<td>all</td>
</tr>
<tr>
<td>ocean_tide_height</td>
<td>int</td>
<td>Ocean tide height</td>
<td>meters</td>
<td>all</td>
</tr>
<tr>
<td>mean_sea_surface</td>
<td>int</td>
<td>Mean sea surface height</td>
<td>meters</td>
<td>all</td>
</tr>
<tr>
<td>inter_mission_bias</td>
<td>int</td>
<td>Bias to have consistent time series since TOPEX/Poseidon</td>
<td>meters</td>
<td>all</td>
</tr>
<tr>
<td>sea_level_anomaly</td>
<td>int</td>
<td>Sea Level Anomaly relative to MSS</td>
<td>meters</td>
<td>all</td>
</tr>
<tr>
<td>validation_flag</td>
<td>byte</td>
<td>Flag indicating if Sea Level Anomaly is valid or not</td>
<td>none</td>
<td>all</td>
</tr>
</tbody>
</table>

Table 6. Overview of data handling variables in L2P NetCDF file.
5.1.2.1. Attributes

Additional attributes may be available in L2P files. They are providing information about the type of product or the processing and parameter used.

5.1.2.2. Example of L2P file

```netcdf
{
    dimensions:
        time = 1522 ;
    variables:
        double time(time) ;
            time:units = "seconds since 2000-01-01 00:00:00.0" ;
            time:long_name = "time (sec. since 2000-01-01)" ;
            time:standard_name = "time" ;
            time:calendar = "gregorian" ;
    int latitude(time) ;
        latitude:scale_factor = 1.e-06 ;
        latitude:comments = "Positive latitude is North latitude, negative latitude is South latitude." ;
        latitude:long_name = "latitude" ;
        latitude:standard_name = "latitude" ;
        latitude:units = "degrees_north" ;
    int longitude(time) ;
        longitude:scale_factor = 1.e-06 ;
        longitude:comments = "East longitude relative to Greenwich meridian" ;
        longitude:long_name = "longitude" ;
        longitude:standard_name = "longitude" ;
        longitude:units = "degrees_east" ;
    int range(time) ;
        range:_FillValue = 2147483647 ;
        range:comment = "All instrumental corrections included, i.e. distance antenna-COG, USO drift correction, internal path correction, Doppler correction, modeled instrumental errors corrections and system bias." ;
        range:scale_factor = 0.0001 ;
        range:coordinates = "longitude latitude" ;
        range:add_offset = 700000 ;
        range:long_name = "corrected 1 Hz altimeter range in main altimeter frequency band" ;
        range:standard_name = "altimeter_range" ;
        range:units = "m" ;
}```
short wet_tropospheric_correction(time) ;

    wet_tropospheric_correction:_FillValue = 32767s ;
    wet_tropospheric_correction:comment = "A wet tropospheric correction must be added (negative value) to the instrument range to correct this range measurement for wet tropospheric range delays of the radar pulse. This correction is computed from the data of the onboard radiometer." ;
    wet_tropospheric_correction:scale_factor = 0.0001 ;
    wet_tropospheric_correction:coordinates = "latitude longitude" ;
    wet_tropospheric_correction:long_name = "radiometer wet tropospheric correction" ;
    wet_tropospheric_correction:standard_name = "altimeter_range_correction_due_to_wet_troposphere" ;
    wet_tropospheric_correction:units = "m" ;

short wet_tropospheric_correction_model(time) ;

    wet_tropospheric_correction_model:_FillValue = 32767s ;
    wet_tropospheric_correction_model:comment = "Computed at the altimeter time-tag from the interpolation of 2 meteorological fields that surround the altimeter time-tag. A wet tropospheric correction must be added (negative value) to the instrument range to correct this range measurement for wet tropospheric range delays of the radar pulse." ;
    wet_tropospheric_correction_model:scale_factor = 0.0001 ;
    wet_tropospheric_correction_model:source = "European Center for Medium Range Weather Forecasting" ;
    wet_tropospheric_correction_model:coordinates = "latitude longitude" ;
    wet_tropospheric_correction_model:long_name = "operational ECMWF model wet tropospheric correction" ;
    wet_tropospheric_correction_model:standard_name = "altimeter_range_correction_due_to_wet_troposphere" ;
    wet_tropospheric_correction_model:units = "m" ;
    wet_tropospheric_correction_model:institution = "ECMWF" ;

short dry_tropospheric_correction_model(time) ;

dry_tropospheric_correction_model:_FillValue = 32767s ;

dry_tropospheric_correction_model:comment = "Computed at the altimeter time-tag from the interpolation of 2 meteorological fields that surround the altimeter time-tag. A dry tropospheric correction must be added (negative value) to the instrument range to correct this range measurement for dry tropospheric range delays of the radar pulse." ;

dry_tropospheric_correction_model:scale_factor = 0.0001 ;

dry_tropospheric_correction_model:source = "European Center for Medium Range Weather Forecasting" ;

dry_tropospheric_correction_model:coordinates = "latitude longitude" ;

dry_tropospheric_correction_model:long_name = "operational ECMWF model dry tropospheric correction" ;

dry_tropospheric_correction_model:standard_name = "altimeter_range_correction_due_to_dry_troposphere" ;

dry_tropospheric_correction_model:units = "m" ;
dry_tropospheric_correction_model:institution = "ECMWF"
short dynamic_atmospheric_correction(time);
dynamic_atmospheric_correction:_FillValue = 32767s;
dynamic_atmospheric_correction:comment = "MOG2D high resolution forced with operational ECMWF pressure and wind fields plus inverse barometer. This correction is computed by adding the high frequency fluctuations of the sea surface topography and the inverted barometer height correction computed from rectangular grids."

dynamic_atmospheric_correction:scale_factor = 0.0001;
dynamic_atmospheric_correction:coordinates = "longitude latitude"
dynamic_atmospheric_correction:long_name = "dynamic atmospheric correction"
dynamic_atmospheric_correction:units = "m"
dynamic_atmospheric_correction:institution = "LEGOS/CNES"

int ocean_tide_height(time);
ocean_tide_height:_FillValue = 2147483647;
ocean_tide_height:comment = "Includes the corresponding loading tide and equilibrium long-period ocean tide height."
ocean_tide_height:scale_factor = 0.0001;
ocean_tide_height:source = "FES2014"
ocean_tide_height:coordinates = "longitude latitude"
ocean_tide_height:long_name = "FES model geocentric ocean tide height"
ocean_tide_height:standard_name = "sea_surface_height_amplitude_due_to_geocentric_ocean_tide"
ocean_tide_height:units = "m"
ocean_tide_height:institution = "LEGOS/CNES"

short solid_earth_tide(time);
solid_earth_tide:_FillValue = 32767s;
solid_earth_tide:comment = "Calculated using Cartwright and Tayler tables and consisting of the second and third degree constituents. The permanent tide (zero frequency) is not included."
solid_earth_tide:scale_factor = 0.0001
solid_earth_tide:coordinates = "longitude latitude"
solid_earth_tide:long_name = "solid earth tide height"
solid_earth_tide:standard_name = "sea_surface_height_amplitude_due_to_earth_tide"
solid_earth_tide:units = "m"
solid_earth_tide:institution = "National Institute of Oceanography (UK)"

short pole_tide(time);
pole_tide:_FillValue = 32767s;
pole_tide:scale_factor = 0.0001;
pole_tide:source = "Wahr [1985] Deformation of the Earth induced by polar motion - J. Geophys. Res. (Solid Earth), 90, 9363-9368.";
pole_tide:coordinates = "longitude latitude";
pole_tide:long_name = "geocentric pole tide height";
pole_tide:standard_name = "sea_surface_height_amplitude_due_to_pole_tide";
pole_tide:units = "m";
pole_tide:institution = "IERS";

short sea_state_bias(time);

sea_state_bias:_FillValue = 32767;
sea_state_bias:comment = "A sea state bias correction must be added (negative value) to the instrument range to correct this range measurement for sea state delays of the radar pulse."
sea_state_bias:scale_factor = 0.0001;
sea_state_bias:source = "Empirical solution fitted on Jason-2 GDR_C data"
sea_state_bias:coordinates = "longitude latitude"
sea_state_bias:long_name = "sea surface height bias due to sea surface roughness on main altimeter frequency band"

sea_state_bias:standard_name = "sea_surface_height_bias_due_to_sea_surface_roughness"
sea_state_bias:units = "m"
sea_state_bias:institution = "CNES"

short ionospheric_correction(time);

ionospheric_correction:_FillValue = 32767;
ionospheric_correction:scale_factor = 0.0001;
ionospheric_correction:coordinates = "longitude latitude"
ionospheric_correction:long_name = "altimeter filtered ionospheric correction on main altimeter frequency band"

ionospheric_correction:standard_name = "altimeter_range_correction_due_to_ionosphere"
ionospheric_correction:units = "m"

int mean_sea_surface(time);

mean_sea_surface:_FillValue = 2147483647;
mean_sea_surface:comment = "referenced to 20 year period"
mean_sea_surface:scale_factor = 0.0001;
mean_sea_surface:source = "MSS_CNES_CLS-2015"
mean_sea_surface:coordinates = "longitude latitude"
mean_sea_surface:long_name = "mean sea surface height above reference ellipsoid"

mean_sea_surface:units = "m"
mean_sea_surface:institution = "CLS/CNES"

int inter_mission_bias(time);
inter_mission_bias:_FillValue = 2147483647 ;
inter_mission_bias:units = "m" ;
inter_mission_bias:long_name = "bias to have consistent time series since TOPEX/Poseidon" ;
inter_mission_bias:scale_factor = 0.0001 ;
inter_mission_bias:coordinates = "longitude latitude" ;
short sea_level_anomaly(time) ;
sea_level_anomaly:_FillValue = 32767s ;
sea_level_anomaly:quality_flag = "validation_flag" ;
sea_level_anomaly:comment = "altitude of satellite (altitude) - Ku band corrected ocean altimeter range (range) - alimeter ionospheric correction on Ku band (ionospheric_correction) - model dry tropospheric correction (dry_tropospheric_correction_model) - radiometer wet tropospheric correction (wet_tropospheric_correction) - sea state bias correction in Ku band (sea_state_bias) - solid earth tide height (solid_earth_tide) - geocentric ocean tide height (ocean_tide_height) - geocentric pole tide height (pole_tide) - dynamic atmospheric correction (dynamic_atmospheric_correction) - mean sea surface (mean_sea_surface)" ;
sea_level_anomaly:scale_factor = 0.0001 ;
sea_level_anomaly:coordinates = "longitude latitude" ;
sea_level_anomaly:long_name = "sea level anomaly" ;
sea_level_anomaly:standard_name = "sea_surface_height_above_sea_level" ;
sea_level_anomaly:units = "m" ;
int altitude(time) ;
altitude:_FillValue = 2147483647 ;
altitude:comment = "Altitude of satellite above the reference ellipsoid (TOPEX)." ;
altitude:scale_factor = 0.0001 ;
altitude:coordinates = "longitude latitude" ;
altitude:add_offset = 700000. ;
altitude:long_name = "1Hz altitude of satellite" ;
altitude:standard_name = "height_above_reference_ellipsoid" ;
altitude:units = "m" ;
byte validation_flag(time) ;
validation_flag:_FillValue = 127b ;
validation_flag:flag_meanings = "valid_data_over_ocean rejected_data" ;
validation_flag:long_name = "validation flag" ;
validation_flag:flag_values = 0b, 1b ;
validation_flag:coordinates = "longitude latitude" ;

// global attributes:
:Conventions = "CF-1.6" ;
:cycle_number = 9 ;
:pass_number = 644 ;
:absolute_pass_number = 6804 ;
:first_meas_time = "2016-10-10 11:01:51" ;
:last_meas_time = "2016-10-10 11:19:03" ;
:creator_email = "aviso@altimetry.fr" ;
:product_version = "01_01" ;
:cdm_data_type = "swath" ;
:references = "http://aviso.altimetry.fr" ;
:Metadata_Conventions = "Unidata Dataset Discovery v1.0" ;
:institution = "CLS,CNES,EUMETSAT" ;
:creator_name = "AVISO" ;
:title = "NRT Sentinel-3A Global Ocean Along track Sea Level Anomalies L2P
products" ;
:standard_name_vocabulary = "http://cf-pcmdi.llnl.gov/documents/cf-standard-
names/standard-name-table/25/cf-standard-name-table.html" ;
:summary = "The Near Real Time Level-2P sea surface height above mean sea
surface products for Sentinel-3A mission." ;
:project = "EUMETSAT Sentinel-3 L2P/L3 marine altimetry service" ;
:platform = "Sentinel-3A" ;
:contact = "aviso@altimetry.fr" ;
:source = "Sentinel-3A measurements" ;
:based_on = "Sentinel-3A NRT" ;
:creator_url = "http://aviso.altimetry.fr" ;
:processing_level = "L2P" ;
equator_time = "2016-10-10T11:04:43.307000" ;
equator_longitude = 343.81 ;
:creation_date = "2016-10-28T15:23:13" ;
:software_version = "L2P(0.2.0-develop@6658b6f)_OCTANT(11.16.0)" ;
6. Products accessibility

The Sentinel-3A L2P products are available via authenticated servers.

- On authenticated Aviso+ FTP (online products):
  - A login /Password will be provided via email with all the necessary information to access the products.

  The following acknowledgement must be cited when using the products:
  “The Sentinel-3A L2P products are processed on behalf of EUMETSAT and distributed by AVISO+”.

- On the authenticated Aviso+ CNES Data Center (archived products):
  Register and download on [https://aviso-data-center.cnes.fr/](https://aviso-data-center.cnes.fr/)
7. News, updates and reprocessing

7.1. Operational news

To be kept informed about events occurring on the satellites and on the potential services interruption, see the [Duacs] operational news on the Aviso+ website:

7.2. Updates and reprocessing

An Aviso+ web page is dedicated to updates and reprocessing of monomission products such as L2P products:
8. Contacts

For more information, please contact:

Aviso+ User Services
CLS
8-10 rue Hermès
Parc Technologique du canal
F-31520 Ramonville Cedex
France
Tél: (+33) (0) 561 394 780
Fax: (+33) (0) 561 393 782
E-mail: aviso@altimetry.fr
On Internet: http://www.aviso.altimetry.fr/

The user service is also interested in user feedbacks; questions, comments, proposals, requests are much welcome.