CTOH Along-Track Sea Level Anomalies regional products (X-TRACK) User Handbook

Nomenclature: SALP-MU-P-EA-23211-CLS
Issue: 1 rev 1

Date: July 2018
Chronology Issues:

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Validated by</th>
<th>Reason for change:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2018/04/05</td>
<td></td>
<td>Creation of the document from the CTOH existing handbook</td>
</tr>
<tr>
<td>1.1</td>
<td>2018/07/24</td>
<td></td>
<td>Cosmetic correction</td>
</tr>
</tbody>
</table>
List of Acronyms:

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADT</td>
<td>Absolute Dynamic Topography</td>
</tr>
<tr>
<td>Aviso+</td>
<td>Archiving, Validation and Interpretation of Satellite Oceanographic data</td>
</tr>
<tr>
<td>CLS</td>
<td>Collecte, Localisation, Satellites</td>
</tr>
<tr>
<td>CNES</td>
<td>Centre National d’Etudes Spatiales</td>
</tr>
<tr>
<td>CTOH</td>
<td>Centre de Topographie des Océans et de l’Hydrosphère</td>
</tr>
<tr>
<td>NRT</td>
<td>Near Real Time</td>
</tr>
<tr>
<td>SSALTO</td>
<td>Segment Sol multimissions d’ALTimétrie, d’Orbitographie et de localisation précise.</td>
</tr>
<tr>
<td>SLA</td>
<td>Sea Level Anomaly</td>
</tr>
</tbody>
</table>
Contents

1. Introduction .. 1
 1.1. Data Policy and conditions of use ... 1
2. Processing ... 2
 2.1. Product content .. 2
 2.2. Processing method .. 3
3. X-TRACK Coastal along-track SLA Products ... 6
 3.1. Temporal availability .. 6
 3.2. Nomenclature of files .. 7
4. Data format ... 8
 4.1. NetCdf .. 8
5. Accessibility of the products .. 11
 5.1. Aviso+ registration ... 11
 5.2. Folders on the ftp server ... 11
6. Contacts ... 12
1. Introduction

The CTOH computes and distributes regional along-track sea level anomaly (SLA) products for the following altimeter missions: Topex/Poseidon, Jason-1, Jason-1 interleaved, Topex/Poseidon interleaved, Jason-2, Jason-3, Geosat Follow on (GFO), SARAL/Altika and Envisat. Long time series of SLA combining altimeter data from T/P, Jason-1, Jason-2 and Jason-3 are then produced.

Publications should include the following statement in the Acknowledgments:
“Altimetry data used in this study were developed, validated, and distributed by the CTOH/LEGOS, France”.

X-TRACK products are now identified by a DOI. Please use it when citing X-TRACK.
For the last version the DOI is 10.6096/CTOH_X-TRACK_2017_02.

1.1. Data Policy and conditions of use

The X-TRACK Coastal along-track SLA products are available free of charge for scientific studies or non-profit projects only.

Commercial use not in line with the License Agreement is subject to separate agreement and licence (Contact aviso@altimetry.fr)

Please, subscribe to get access by filling the registration form on:
Using the GDR (Geophysical Data Record) data and additional altimetry corrections available in the CTOH database (see Processing method for details), SLA projected onto reference tracks with a spatial interval of about 6-7 km between points (1 second) are computed using the X-TRACK software (Birol et al., 2017), developed at LEGOS. The processing is done on a regional basis and for each region, both raw and along-track low-pass filtered (using a 40-km cutoff frequency) SLA are available.

2.1. Product content

The product available in a number of different regions (see Figure 1) consists in 1-Hz alongtrack SLA time series reprocessed on a regional basis with the X-TRACK software. Two versions exist: one with the raw SLA and one with the spatially filtered SLA (see above). They are provided in NetCDF format and include:

- the SLA data along a nominal ground-track,
- an alongtrack MSSH profile which is consistent with the SLA (same period of data),
- the geophysical corrections (the tidal and DAC corrections are already applied on SLA but are provided in separate fields for information),
- the distance to nearest coast from GSHHS (Wessel et al., 1996),
- the distance to nearest coast from P.Stumpf (Stumpf and Potemra, 2012) and
- the mean dynamic topography CNES_CLS_09 (Rio et al., 2011)

Figure 1: Map of the regions provided for X-TRACK Coastal products
2.2. Processing method

Processing first includes parameters from the GDR products for each altimeter mission plus additional state-of-the-art corrections distributed by the CTOH. Details on selected corrections are given in the table 2. Details on the new data processing can be found in Birol et al. (2017). The historical processing (before 2016) is described in Vignudelli et al. (2005), Roblou et al. (2011) and Durand et al. (2008, see appendix). It is summarized below.

Since altimetry observations degrade in accuracy near the coast, the processing starts by the selection of valid ocean data. Then, a precise land mask and a dedicated editing strategy are used. The latter includes two steps. The first step is to impose editing criteria, both on the altimeter measurements and on the corrective terms, that are designed to be more restrictive than the standard ones (AVISO, 1996). These criteria are thresholds that have been chosen after several tests for each parameter, in order to ensure that all outliers are totally removed (indeed, one of the reasons found for the unrealistic large variability often observed in altimeter data near continental shelves is the presence of many outliers in the corrective terms).

To solve this problem, the behavior of all the corrective terms is analyzed along the track taking into account their individual characteristics. Each corrective term is edited in a different way. Abrupt changes are assumed to be associated with erroneous data. Outliers are removed. More details can be found in Birol et al. (2017).

Since the editing process lead to the rejection of all altimeter measurements for which at least one correction is selected as wrong, this strategy rejects much more data than the classical ones, even if the altimeter measurement is meaningful. However, in many circumstances, data analysis indicates that an accurate interpolated correction would allow us to recover valid altimeter observations. Thus, in a second step, all corrective terms are recomputed using interpolation/extrapolation, based on the valid data for each correction. This method therefore allows recovery of a lot more good measurements that are flagged in the standard product because of a deficient correction.

Once the corrected sea surface heights (SSHs) are computed, they are then projected onto fixed points along the nominal ground track of the altimeter satellite and converted into SLAs (Sea Level Anomalies) by subtracting a precise mean sea surface height. The latter is computed at the fixed nominal points, by inversion of all the available SSH measurements along the repeated ground tracks of the altimeter mission considered. This procedure is important since it was found that, in coastal areas where the topographic gradients are large, using inaccurate mean sea surface led to significant errors in SLAs (Vignudelli et al., 2005). The background noise may be filtered using a Loess filter to remove wavelengths shorter than 40 km (filtered version of the SLA product).
<table>
<thead>
<tr>
<th>Corrections</th>
<th>T/P</th>
<th>Jason-1</th>
<th>Jason-2</th>
<th>Jason-3</th>
<th>Envisat</th>
<th>GFO</th>
<th>Saral/Altika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionosphere</td>
<td>From dual frequency altimeter range measurements + GCP (GDR Correction)</td>
<td>From dual-frequency altimeter range measurements</td>
<td>From the GIM model (Ijima et al., 1999)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry troposphere</td>
<td>From ECMWF model</td>
<td>From NCEP</td>
<td>From ECMWF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet troposphere</td>
<td>From radiometer + GCP correction of Radiometer drift effects + GCP correction of yaw effects</td>
<td>From radiometer correction</td>
<td>From model</td>
<td>From radiometer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea state bias</td>
<td>From non parametric empirical model (Gaspar et al., 1994)</td>
<td>From non parametric empirical model (Tran et al., 2011)</td>
<td>From non parametric empirical model (Labroue et al., 2004)</td>
<td>Calculated as 4.5% of the Significant Wave Height</td>
<td>From non parametric empirical model (Gaspar et al., 1994)</td>
<td>From non parametric empirical model (Labroue et al., 2004)</td>
<td></td>
</tr>
<tr>
<td>Solid tides</td>
<td>From tide potential model (Schureman 1958)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pole tides</td>
<td>From Wahr, 1985</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loading effect</td>
<td>From FES1999 (Lefèvre et al., 2002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atmospheric correction (DAC)</td>
<td>From TUGOm 2D global models for periods smaller than 20 days (Carrere and Lyard 2003) + Inverted barometer for periods greater than 20 days, derived from ECMWF pressure.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocean tide</td>
<td>From FES 2012 (Carrère et al., 2012)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: list of corrections used for each mission

Tidal correction

FES2012 tidal models (from Carrere et al. 2012) is used to compute this correction for all missions and over every region. Tidal corrections are delivered also in a separate field in case users would want to use another tidal correction.

Further details on tidal spectra:
The tidal spectrum implemented for the tidal correction based on the FES2004 model solutions includes astronomical constituents M_2, S_2, N_2, K_2, K_1, O_1, Q_1, $2N_2$, P_1, M_f, M_m, M_{tm} and M_{sQM}. Semi-diurnal constituents M_u, N_u, L_2, T_2, L_2, S_2, J_2 and R_2, diurnal constituents O_0, J_1, P_1, M_f, M_m, M_{tm} and M_{sQM}. Nonlinear constituents M_4, S_{1a}, S_{1b}, S_{1c} and S_{1d} and long-period constituents M_{sO}, M_{sF}, M_{sM}, M_{sT} and M_{sR} are added using admittances function. Finally, a non linear constituent M_4, long-period constituent S_{sa} and radiational S_1 constituents are also included.
Dynamic Atmospheric Correction (DAC)

The DAC is computed as the combination of high-frequency elevations from the global Mog2D/T-UGOm 2D model (Carrere and Lyard 2003) simulations plus low-frequency elevations from inverted barometer law (using ECMWF atmospheric pressure products). DAC corrections are delivered also in a separate field in case users would want to use another tidal correction.
3.1. Temporal availability

Table 1 indicates for each satellite mission and/or regional product the first and last dates available (and the corresponding cycle number).

<table>
<thead>
<tr>
<th>Mission</th>
<th>Start</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>T/P+Jason-1+Jason-2+Jason-3</td>
<td>1993/02/28 (cycle 17 of T/P)</td>
<td>2017/07/26 (cycle 53 of Jason-3)</td>
</tr>
<tr>
<td>Envisat-v2.1</td>
<td>2002/10/01 (cycle 10)</td>
<td>2010/09/14 (cycle 92)</td>
</tr>
<tr>
<td>GFO</td>
<td>2000/01/08 (cycle 37)</td>
<td>2008/09/08 (cycle 222)</td>
</tr>
<tr>
<td>T/P interleaved+Jason-1 interleaved</td>
<td>2002/09/21 (cycle 369 of T/P)</td>
<td>2012/02/02 (cycle 372 of Jason-1)</td>
</tr>
<tr>
<td>SARAL/Altika</td>
<td>2013/03/04 (cycle 1)</td>
<td>2016/04/07 (cycle 32)</td>
</tr>
</tbody>
</table>

Table 1: temporal availability of each time series
3.2. Nomenclature of files

The nomenclature used for these products is:

ctoh.sla.ref.<MISSION>.<ZONE>.<TRACK_NUMBER>.nc.lzma

(note that lzma is a compression algorithm)

<table>
<thead>
<tr>
<th>MISSION</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GFO</td>
<td>J1</td>
<td>Geodat Follow On</td>
</tr>
<tr>
<td></td>
<td>J1N</td>
<td>Jason-1 New orbit</td>
</tr>
<tr>
<td>J2</td>
<td>RA2</td>
<td>Envisat</td>
</tr>
<tr>
<td>SRL</td>
<td>TP</td>
<td>Saral/AltiKa</td>
</tr>
<tr>
<td></td>
<td>TP+J1+J2</td>
<td>TOPEX/Poseidon+ Jason-1+ OSTM/Jason-2</td>
</tr>
<tr>
<td></td>
<td>TP+J1+J2+J3</td>
<td>TOPEX/Poseidon+ Jason-1 + OSTM/Jason-2+Jason-3</td>
</tr>
<tr>
<td>TPN</td>
<td>TPN+J1N</td>
<td>TOPEX/Poseidon New Orbit+ Jason-1 New Orbit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZONE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ADELIE</td>
<td></td>
<td>Adelie-Mertz</td>
</tr>
<tr>
<td>AMAZON</td>
<td></td>
<td>Amazon</td>
</tr>
<tr>
<td>ASA</td>
<td></td>
<td>Atlantic South America</td>
</tr>
<tr>
<td>CHINASEA</td>
<td></td>
<td>China Sea</td>
</tr>
<tr>
<td>DRAKE</td>
<td></td>
<td>Drake passage</td>
</tr>
<tr>
<td>EAUSTRALIA</td>
<td></td>
<td>East Australia</td>
</tr>
<tr>
<td>GOM</td>
<td></td>
<td>Gulf of Mexico Caribbean Sea</td>
</tr>
<tr>
<td>GULFSTREAM</td>
<td></td>
<td>Gulf Stream</td>
</tr>
<tr>
<td>HUDSON</td>
<td></td>
<td>Hudson Bay</td>
</tr>
<tr>
<td>HUMBOLDT</td>
<td></td>
<td>Humboldt current</td>
</tr>
<tr>
<td>KERGUELEN</td>
<td></td>
<td>Kerguelen Islands</td>
</tr>
<tr>
<td>LABRADOR</td>
<td></td>
<td>Labrador Sea</td>
</tr>
<tr>
<td>MEDSEA</td>
<td></td>
<td>Mediterranean Sea</td>
</tr>
<tr>
<td>NEA</td>
<td></td>
<td>North East Atlantic</td>
</tr>
<tr>
<td>NINDIAN</td>
<td></td>
<td>North Indian Ocean</td>
</tr>
<tr>
<td>NORWAY</td>
<td></td>
<td>Norway</td>
</tr>
<tr>
<td>NWA</td>
<td></td>
<td>North West America</td>
</tr>
<tr>
<td>NWP</td>
<td></td>
<td>North West Pacific</td>
</tr>
<tr>
<td>SEA</td>
<td></td>
<td>South and East Africa</td>
</tr>
<tr>
<td>WAFRICA</td>
<td></td>
<td>West Africa</td>
</tr>
<tr>
<td>WAUSTRALIA</td>
<td></td>
<td>West Australia</td>
</tr>
<tr>
<td>WLA</td>
<td></td>
<td>West Latin America - California</td>
</tr>
<tr>
<td>WTP</td>
<td></td>
<td>West Tropical Pacific</td>
</tr>
</tbody>
</table>

| TRACK_NUMBER | | Number of pass (depending on the satellite) |
This chapter presents the data storage format used for X-TRACK Coastal along-track SLA products.

4.1. NetCDF

The products are stored using the NetCDF format.

NetCDF (network Common Data Form) is an interface for array-oriented data access and a library that provides an implementation of the interface. The netCDF library also defines a machine-independent format for representing scientific data. Together, the interface, library, and format support the creation, access, and sharing of scientific data. The netCDF software was developed at the Unidata Program Center in Boulder, Colorado. The netCDF libraries define a machine-independent format for representing scientific data. Please see Unidata NetCDF pages for more information, and to retrieve NetCDF software package on:

https://www.unidata.ucar.edu/software/netcdf/

NetCDF data is:

- Self-Describing. A netCDF file includes information about the data it contains.
- Architecture-independent. A netCDF file is represented in a form that can be accessed by computers with different ways of storing integers, characters, and floating-point numbers.
- Direct-access. A small subset of a large dataset may be accessed efficiently, without first reading through all the preceding data.
- Appendable. Data can be appended to a netCDF dataset along one dimension without copying the dataset or redefining its structure. The structure of a netCDF dataset can be changed, though this sometimes causes the dataset to be copied.
- Sharable. One writer and multiple readers may simultaneously access the same netCDF file.

The products are stored in NetCDF defined by the Cooperative Ocean/Atmosphere Research Data Service (COARDS) and Climate and Forecast (CF) metadata conventions.

The CF convention generalises and extends the COARDS convention but relaxes the COARDS constraints on dimension and order and specifies methods for reducing the size of datasets. A wide range of software is available to write or read NetCDF/CF files. API are made available by UNIDATA http://www.unidata.ucar.edu/software/netcdf:

- C/C++/Fortran
- Java
- MATLAB, Objective-C, Perl, Python, R, Ruby, Tcl/Tk

In addition to these conventions, the files are using a common structure and semantic as shown in the example below:

```plaintext
netcdf ctoh.sla.ref.RA2.adelie.0937 {
  dimensions:
    nbcycles = 83 ;
    nbpoints = 93 ;
  variables:
    float lon(nbpoints) ;
      lon:units = "degrees_east" ;
      lon:unit_long = "Degrees East" ;
```
lon:long_name = "Longitude";
lon:short_name = "Lon";
lon:_FillValue = 99.9999f;
lon:lon_min = 129.f;
lon:lon_max = 135.f;
lon:missing_value = 99.9999f;
lon:scale_factor = 1.f;
lon:add_offset = 0.f;
float lat(nbpoints);
lat:units = "degrees_north";
lat:unit_long = "Degrees North";
lat:long_name = "Latitude";
lat:short_name = "Lat";
lat:_FillValue = 99.9999f;
lat:lat_min = -66.f;
lat:lat_max = -60.f;
lat:missing_value = 99.9999f;
lat:scale_factor = 1.f;
lat:add_offset = 0.f;
float mssh(nbpoints);
mssh:units = "m";
mssh:unit_long = "Meter";
mssh:long_name = "XTRACK Mean Sea Surface";
mssh:short_name = "MSSH";
mssh:_FillValue = 99.9999f;
mssh:missing_value = 99.9999f;
mssh:scale_factor = 1.f;
mssh:add_offset = 0.f;
int cycle(nbcycles);
cycle:long_name = "Cycle number";
cycle:cyc_min = 10;
cycle:cyc_max = 92;
int point(nbpoints);
double time(nbpoints, nbcycles);
time:units = "days since 1950-1-1";
time:calendar = "julian";
time:long_name = "Time of measurement";
time:short_name = "Time";
time:_FillValue = 99.9999;
time:missing_value = 99.9999;
float sla(nbpoints, nbcycles);
sla:units = "m";
sla:unit_long = "Meter";
sla:long_name = "XTRACK Sea Level ";
sla:short_name = "SLA";
sla:_FillValue = 99.9999f;
sla:missing_value = 99.9999f;
sla:scale_factor = 1.f;
sla:add_offset = 0.f;
sla:comment = "All corrections applied including tide, wind and pressure effects";
float tide(nbpoints, nbcycles);
tide:units = "m";
tide:unit_long = "Meter";
tide:long_name = "Global FES12 tide correction";
tide:short_name = "Tide";
tide:_FillValue = 99.9999f;
tide:missing_value = 99.9999f;
tide:scale_factor = 1.f;
CCTOAlong-Track Sea Level Anomalies regional products (X-TRACK)
User Handbook

Issue: 1.1 - Date: 24/07/2018 - Nomenclature: SALP-MU-P-EA-23211-CLS

tide:add_offset = 0.f;
float dac(nbpoints, nbcycles);
dac:units = "m";
dac:unit_long = "Meter";
dac:long_name = "Global Dynamic Atmospheric Corrections";
dac:short_name = "DAC";
dac:FillValue = 99.9999f;
dac:missing_value = 99.9999f;
dac:scale_factor = 1.f;
dac:add_offset = 0.f;
int dist_to_coast_gshhs(nbpoints);
dist_to_coast_gshhs:_FillValue = -2147483648;
dist_to_coast_gshhs:scale_factor = -0.01f;
dist_to_coast_gshhs:add_offset = 0.f;
dist_to_coast_gshhs:comment = "Distance to nearest GSHHS 1.3 coastline in cm";
dist_to_coast_gshhs:units = "m";
dist_to_coast_gshhs:actual_range = -269448768., 251344672.;
dist_to_coast_gshhs:description = "Geodesic distances on WGS-84";
dist_to_coast_gshhs:long_name = "Distance to nearest coastline";
dist_to_coast_gshhs:GMT_version = "4.5.9_r9889 [64-bit]";
dist_to_coast_gshhs:ctoh_edit_date = "2017-07-11 00:57";
double dist_to_coast_stumpf(nbpoints);
dist_to_coast_stumpf:original_file = "dist2coast.signed.txt";
dist_to_coast_stumpf:reference = "http://oceancolor.gsfc.nasa.gov/DOCS/DistFromCoast/";
dist_to_coast_stumpf:contact = "ctoh_products@legos.obs-mip.fr";
dist_to_coast_stumpf:long_name = "dist_to_coast_stumpf";
dist_to_coast_stumpf:comment = "Original grid provided by Richard P. Stumpf from NOAA National Ocean Service. Computed with GMT using the World Vector Shoreline (WVS) and decimated to the intermediate resolution: http://gmt.soest.hawaii.edu/gmt/doc/gmt/html/GMT_Docs/node222.html. It includes all the islands.";
dist_to_coast_stumpf:units = "km";
dist_to_coast_stumpf:ctoh_edit_date = "2017-07-11 00:57";
double mdt_cnes_cls_09(nbpoints);
mdt_cnes_cls_09:_FillValue = 1.84467440737096e+19;
mdt_cnes_cls_09:comment = "MDT CNES-CLS09 V1.1";
mdt_cnes_cls_09:CreatedOn = "11-MAR-2010 16:50:55:000000";
mdt_cnes_cls_09:CreatedBy = "rio@px-124.cls.fr";
mdt_cnes_cls_09:units = "m";
mdt_cnes_cls_09:FileType = "GRID_DOTS";
mdt_cnes_cls_09:OriginalName = "MDT_CNES-CLS09_v1.1.nc";
mdt_cnes_cls_09:long_name = "Mean Dynamic Topography";
mdt_cnes_cls_09:ctoh_edit_date = "2017-07-11 00:57";

// global attributes:
.title = "CTOH Along track Sea Level Anomalies";
institution = "CTOH/LEGOS, Toulouse Univ., CNRS, IRD, CNES, UPS, France";
Conventions = "CF-1.6";
.history = "creation: 2017/07/11";
.contact = "ctoh_products@legos.obs-mip.fr http://ctoh.legos.obs-mip.fr";
.source = "Version X-TRACK: 1.02 - Version mercurial: hg2f53ee15e44d";
doi = "10.6096/CTOH_X-TRACK_2017_02";
NCO = "4.0.9";
5. Accessibility of the products

5.1. Aviso+ registration

Please fill the online form on
Aviso+ will send you your own access (login/password) by e-mail as soon as possible.

The access will be available on your dedicated products page on

5.2. Folders on the ftp server

Access restrictions are applied on folders. Your account gives you an access to a given list of altimetry data. Thus, the folders you're not subscribed to are empty.
Contacts

For more information, please contact:

Aviso+ User Services
CLS
11 rue Hermès
Parc Technologique du canal
F-31520 Ramonville Cedex
France
Tél: (+33) (0) 561 394 780
Fax: (+33) (0) 561 393 782
E-mail: aviso@altimetry.fr
On Internet: https://www.aviso.altimetry.fr/

The user service is also interested in user feedbacks; questions, comments, proposals, requests are much welcome.
Bibliography

