Project news

CNES project managers

Ongoing and forthcoming missions

At the current time, the virtual altimeter constellation includes six operating satellites and two new missions are expected to join the constellation in 2018. They are the Sentinel-3B Copernicus mission operated by ESA and EUMETSAT and the CFOSAT mission operated by CNES and CNSA.

CFOSAT is a French-Chinese oceanography mission (CNES/CNSA) devoted to surface ocean wind and wave observation. The satellite instruments are currently being integrated in China. The launch has been scheduled for October 2018. A prototype SWIM NRT processing line has now been completed, so development of operational processing lines has begun at the French Mission Center. Since August 2017, simulated SWIM data are available to PIs for further investigation (please contact Flavien Gouillon at CNES).

Sentinel-3 is an EC mission designed to measure sea-surface topography, sea- and land-surface temperature, and ocean- and land-surface color. Sentinel-3 belongs to a series of satellites, each covering a different aspect of Earth Observation and monitoring. Sentinel-1 is an SAR-dedicated satellite while Sentinel-2 is flying an optical payload, etc. Sentinel-3A

SUMMARY

Project News ... 1
Tools for mesoscale eddy trajectory atlas 4
A database of hydrology targets for the new DEM onboard Jason-3 5
Distribution of GPD+: state of the art Wet Tropospheric Correction 6
15 years of observations of the thickness of Arctic sea ice using satellite altimetry 7
Upcoming high-resolution SSH maps from Dynamic Interpolation 8
Events .. 8

CFOSAT, Credits Thales Alenia Space.
Aviso Users Newsletter #14 was launched on February 27, 2016 and is currently in nominal operation handled by ESRIN and EU-METSAT. Sentinel-3B is expected to be launched in April 2018 with a Rockot launcher.

The Jason-3 Satellite is performing nominally on its reference orbit and is the reference mission for the AVISO+ and CMEMS DUACS system. After nearly 10 years in orbit, the CNES/NASA/EUMETSAT/NOAA OSTM/Jason-2 mission continues to provide the altimetry community with high-quality products despite a few periods during which it is unavailable due to the ageing of some components. In July 2017, Jason-2 was placed on a Long Repetitive Orbit (LRO) at an altitude of roughly 1309.5 km. Jason-2 coverage might be degraded due to the foreseen periods during which it will not be available because of the temperature of the onboard gyros which depends on the satellite-solar angle values. Project teams are doing their utmost to ensure the best coverage possible.

The French-Indian SARAL mission is being operated by CNES and ISRO (the Indian Space Research Organization) with the participation of EU-METSAT. SARAL was launched on February 25, 2013. The mission is working without a hitch and has provided valuable Ka-band altimetry results for more than four years now. In the summer of 2016, SARAL/AltiKa was placed on a geodetic orbit. CNES & ISRO have decided to increase the orbit’s semi-major axis by 1 km and let SARAL drift (i.e. requiring no maneuvers other than for collision avoidance). This move to a drifting orbit is intended to improve geodesy and create new data to enhance Mean Sea Surface (MSS) models. SARAL successfully passed the 3rd joint Exploitation Review at the beginning of December and the exploitation phase has been formally extended up to the end of 2019.

Hy-2A, launched in August 2011, is a Chinese mission with French-Chinese collaboration between CNES and CNSA/NSOAS for altimetry (DUACS) and orbitography products (IDS). On March 23, 2016, the
Hy-2A satellite was moved from its nominal orbit to a geodetic orbit around 2 km higher. The new orbit has a 168-day cycle with 2,315 orbits in the full cycle.

ESA’s CryoSat-2 ice mission, launched on April 8, 2010, also contributes to the multi-mission SSALTO/DUACS system as a complementary mission for value-added products (Levels 3 & 4). Cryosat-2 is expected to continue up to February 2019 at least, given that there is no sign of degradation on the platform at the moment. In November ESA released a new version of the Ocean products (baseline C) which is almost aligned with Sentinel-3A products. Global reprocessing of ocean data collected from April 2010 to date, has been scheduled and will be proposed in 2018.

Four satellites are also in a geodetic and/or LRO orbit, thus providing a very dense coverage of the ocean surface as illustrated for the Florida region during the OSTST meeting in 2017.

Ongoing developments

SWOT (Surface Water and Ocean Topography) is a French-American mission run jointly by CNES and NASA, with the participation of UKSA and CSA, to study oceanic and inland water surfaces. Mission progress is nominal, with the first deliveries of the CNES electric model to the JPL team. The mission’s critical design review (CDR) will be held early in 2018 and the first flight models are expected to be delivered in 2018.

ESA has chosen two concepts, FORUM and SKIM for further development, to compete for the ninth Earth Explorer mission. The Sea-surface Kinematics Multiscale monitoring (SKIM) candidate would carry a novel, wide-swath, scanning multibeam radar altimeter to measure ocean-surface currents. Uniquely, it would use a Doppler technique, which offers more direct measurements than conventional satellite altimeters. These new measurements would improve our understanding of vertical and horizontal ocean-surface dynamics over the global ocean every few days. This would increase our knowledge of how the ocean and atmosphere interact – for example, how atmospheric carbon dioxide is drawn down into the ocean.

Sentinel-6A/Jason-CS-A, the first of a two-satellite Sentinel-6 constellation, is scheduled to be launched from Vandenberg Air Force Base, California, US, late in 2020. Also known as Jason Continuity of Service (Jason-CS), the Sentinel-6 satellites will replace the Jason-3 satellite to ensure the continuity of operational oceanographic services on the reference orbit.
A new “Mesoscale Eddy Trajectory Atlas” was released in October 2017 on the Aviso altimetry website. An example has been made available to help you handle the file and generate the visual representation of the eddy trajectories.

This dataset was produced and validated by the SSALTO/DUACS team in collaboration with D. Chelton and M. Schlax from Oregon State University. It replaces the dataset formerly produced and distributed at Oregon State University (OSU). This Mesoscale Eddy Trajectory Atlas is distributed by AVISO+ and available to subscribers from the website.

The processes of mesoscale ocean circulation, such as the formation, evolution and dissipation of eddy-like structures, are significantly affected by the ocean’s kinetic energy. These processes play a vital role in the vertical and horizontal flows of the energy (heat), salts, carbon and nutrients that they carry with them. The ability to take them into account is an important breakthrough for climate studies.

The current version of the eddy atlas has been produced from 24 years of daily altimetry maps of sea surface height (SSH) based on sampling by two satellites (1993-2016). The Aviso Eddy Trajectory Atlas is stored in a single file that contains several fields for physical values: eddy radius, eddy amplitude, eddy rotation speed and rotation type (Cyclonic/Anticyclonic). Other information is also available: time of observation, coordinates, ID of the track, and observation number (which gives the number of days of tracking).

The size and structure of the file may make it difficult to manipulate the data. An example of a program written in Python is available to help you get used to handling the Atlas’s data. It can be downloaded here. This program uses common libraries (xarray, numpy, cartopy and matplotlib) to compile two examples for representing eddy trajectories.

The first example (figure above) tracks the real and filtered trajectories of a given eddy. The user configures the ID of the eddy (“track” variable, eddy identification number), and the smoothing window (min_periods variable).

The second example (figure below) tracks all the eddies in a given zone whose lifetime exceeds a certain number of days. The user initialises the boundaries (lon,lat) of the zone and the lifetime (observation_number, i.e. number of days from the start of the eddy).

Second example: map of trajectories of all eddies with a lifetime longer than 500 days, in a given zone, for the entire period of 1993-2016. Credits CNES/CLS.
Satellite radar nadir altimeters have been widely used to measure river and lake surface water elevations for the last two decades. However, since these instruments are primarily designed to observe ocean surface topography, they are not always able to observe inland waters. For rivers running in valleys not wider than a few kilometers and surrounded by slopes higher than 50 meters, altimeters tend to observe the top of the surrounding topography rather than the river itself. This occurs for all river widths, but is more frequent for smaller rivers. The altimeter instrument on Jason-3, launched in January 2016, operates in “Diode/DEM” tracking mode or Open-Loop mode (OL) which is designed to overcome this issue. The altimeter uses an onboard Digital Elevation Model to set the echoes reception window. This tracking mode has proven efficient, however, it requires a priori knowledge of the target elevation with fairly good exactitude (typically a dozen or so meters). It is no minor task to collect data which meet this constraint on a global scale. This is why, given the interest for the entire hydrology community, the CTOH and ECHOS teams working on LEGOS and CNES teams have combined their technical and scientific expertise to implement the right strategy. The database was thus recently enlarged with about 4,700 targets (lakes and rivers) all over the world to build the new Jason-3 onboard DEM which was uploaded at the end of August 2017 and has been activated since Cycle 57, track 160.

Validation

This upload was very successful and the validation done over four cycles shows that the altimeter performance over inland waters has been significantly improved. For example, it has been shown that “small” rivers such as the Loire or the Garonne in France, which had never been observed in the past by the Jason satellites, are now observed for each over-pass. A much larger scale validation was performed in two steps. (1) Validation on a global scale using a high backscatter coefficient (σ0) as a proxy to ensure that

Water elevation anomaly of the Loire river (top), at Saint-Michel (250 m width), and the Garonne river (bottom) at Caumont (155 m width) compared with in-situ measurements. Credits LEGOS.
the altimeter is indeed tracking water (not shown here, see details on the poster presentation, part.5). (2) Visual validation using human expertise for a sample of 100 stations randomly located around the globe (map below). The result of this validation is shown in the table below.

Access to the database

Users are strongly encouraged “to dive” into Jason-3 data over hydrological targets. The database of targets (lakes and rivers) is available upon request in shapefile or text format. Please send your request and any comment/proposal to Sophie Le Gac, Jason-3 DEM database manager at CNES.

Perspectives

In the future, we plan to continue increasing the size of the database for Jason-3 and similar work is being done for Sentinel-3 A & B. We believe this is a useful contribution to the progress of hydrology using altimetry data, in preparation for SWOT. More details on how the onboard DEM database is handled and updated in order to best serve the hydrology community will be provided in an upcoming issue. Stay tuned!

References:

- Biancamaria S. et al., Validation of Jason-3 tracking modes over French rivers, RSE, in review.
- Le Gac S., Update and validation of the onboard Jason-3 DEM for enhanced acquisitions over inland water targets, OSTST 2017, Miami.

Table: Percentage of occurrence of water observation

<table>
<thead>
<tr>
<th></th>
<th>Closed-Loop</th>
<th>Open Loop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking water</td>
<td>41 (54%)</td>
<td>91 (91%)</td>
</tr>
<tr>
<td>Not tracking water</td>
<td>35 (46%)</td>
<td>9 (9%)</td>
</tr>
<tr>
<td>total</td>
<td>76 (1)</td>
<td>100</td>
</tr>
</tbody>
</table>

Map on the left: location of the 100 stations (yellow dots) superimposed to the Jason-3 ground tracks. Table on the right: Percentage of occurrence of water observation in the Open-Loop (OL) mode is 91% while it was only 54% in the classic autonomous or so called Closed-Loop (CL) mode. (1) 24 stations already in OL mode during cycles 53 to 56.

Distribution of GPD+: state of the art Wet Tropospheric Correction

LEGOS/CTOH, Fernando Niño

In 2017 the Faculty of Science, University of Porto (UPorto, Portugal) and AVISO+/CTOH began collaborating to distribute the most recent data of UPorto’s GPD+ dataset (GNSS-derived Path Delay Plus).

This state-of-the-art dataset, produced at the University of Porto, retrieves improved Wet Tropospheric Corrections (WTC) for radar altimetry missions. The GPD+ WTCs are estimated by objective space-time analysis, by combining all available observations in the vicinity of the point: valid measurements from the on-board microwave radiometer (MWR), from Global Navigation Satellite System (GNSS) coastal and inland stations, and from MWR imaging instruments on various remote sensing satellites. The GPD+ corrections are available both for satellite missions which do not have an on-board microwave radiometer, such as CryoSat-2 (CS2) and for all satellite missions which carry this sensor, by addressing the various error sources inherent in the MWR-derived WTC.

To ensure long-term stability of the corrections, the large set of radiometers used in this study have been calibrated with reference to the Special Sensor Microwave Imager (SSM/I) and the SSM/I Sounder (SSM/IS). The format is NetCDF and the product has been reformatted to be compatible with all other CTOH products. Available missions are: ERS-1 and ERS-2, Envisat, Topex, Jason-1, Jason-2 and Jason-3, as well as Cryosat-2 and Saral/AltiKa. More data information is available at the AVISO+ webpage for GPD+.
Research scientists at LEGOS (the ECHOS and CTOH teams), working together with CNES (PEACHI and TOSCA SICKays-PRIAM projects), have developed a new product, using satellite altimetry, for observing the thickness of Arctic sea ice over a 15-year period (2002-2017).

Currently, the only way of observing the thickness of sea ice at the scale of the ocean is by satellite altimetry. The principle involves measuring the difference in height between the ice and the surrounding water. From this difference it is possible to deduce the freeboard height of sea ice, i.e. the height of the emerged ice. The total thickness can then be calculated from a knowledge of the relative density of the sea ice and the seawater.

While the principle is simple, it is complicated to implement because the tangle of ice and water results in an extremely complex radar signal that can be hard to interpret, whereas the goal is to measure differences in height of just a few centimetres. This explains why it is difficult to develop such products. When different altimetry missions use different radar instruments, the problem becomes even more complex.

The LEGOS scientists showed that the differences between LRM\(^1\) and SAR\(^2\) radar measurements are due to the roughness of the surface, which affects the measurements since they depend on the surface illuminated by the sensing instrument (as the two techniques cover very different surfaces). They were then able to calculate a corrective factor by comparing the results for the two years when the Envisat and CryoSat-2 missions were flying simultaneously (2010-2012), thus obtaining a continuous series of measurements over 15 years for the first time.

The result, illustrated by the curve shown below, representing the thickness of the ice for the period 2002-2017, reveals a remarkable correlation with the thickness of the ice obtained by la-

This first multi-mission product concerning the thickness of Arctic sea ice will be available on the AVISO+ website from December 2017. It will be in the form of monthly sea ice thickness maps for the winter months (October to April) for the period 2002-2017. The spatial resolution will be 12.5 km x 12.5 km.

\(^1\) LRM: Low Resolution Mode. This is currently the most widely used altimetry technique. When using the Ku-band, this technique has a ground footprint in the region of 10 km.

\(^2\) SAR: Synthetic Aperture Radar. This technique is used for the “nadir” altimeters of the CryoSat-2 and Sentinel-3 missions. Using the Ku-band, the ground footprint is just a few hundred metres.

References

Upcoming high-resolution SSH maps from Dynamic Interpolation

CLS, Clément Ubelmann

Several innovative mapping techniques are being developed and tested to take advantage of the dense weave of observations now available and to improve the restitution of non-linear dynamics. A dynamic interpolation method allowing propagation modelling of spatial covariance has been implemented. Tests are being done in several regions and a series of validations and comparisons with independent data are being conducted to assess performance with respect to the reference gridded maps of the Copernicus Marine Environment Monitoring Service (CMEMS).

For the high energy vein of the Gulf Stream, significant improvements were obtained with a 20% reduction of mismatching as compared with independent altimetry profiles. Some comparisons with Sea Surface Temperature (figure 1, above) clearly illustrate these improvements. The continuous eddy trajectories (figure 2, left) indicate better resolving capabilities. This experimental Ssalto/Duacs product will soon be distributed from AVISO+ website. Further information on the poster presentation on the OSTST meeting « Can we compute higher resolution AVISO+ maps? ».

Events

11-16 Feb. 2018: Ocean Science Meeting, Portland, Oregon, USA
13-15 Mar. 2018: Sentinel-3 Validation Team meeting, Darmstadt, Germany
08-13 Apr. 2018: EGU General Assembly, Vienna, Austria
24-29 Sep. 2018: 25 Years of Progress in Radar Altimetry Symposium including the annual meeting of the OSTST and the IDS workshop, Sao Miguel Island, Azores
Dec. 2018: AGU Fall meeting, Washington DC, USA