Surface Water and Ocean Topography (SWOT) Mission

CSA ASC

June 26, 2018

SWOT Algorithm Theoretical Basis Documents (ATBDs)

Shailen Desai Jet Propulsion Laboratory, California Institute of Technology Nicolas Picot Centre National d'Etudes Spatiales

© 2018. All rights reserved

Introduction

- Algorithm Theoretical Basis Documents (ATBDs):
 - Describe the physical and mathematical basis for the algorithms used to generate the science data products.
 - Describe the input and output data for the algorithms.
- ATBDs generated by Algorithm Development Team (ADT).
- Reviewed by members of Science Team for inputs and concurrence.
- Final ATBDs are publicly available.

SWOT Approach

 ATBDs for algorithms used to generate KaRIn science data products are the primary focus for review/input from SWOT science team.

– These algorithms are novel for SWOT.

 ATBDs for algorithms used to generate nadir altimeter science data products, including orbit determination(e.g., POE/MOE) have strong heritage from Jason-series (Jason-1/2/3).

- SWOT to use best available Jason-series standards.

- ATBDs were comprehensively reviewed during Jason-1 mission development by Ocean Surface Topography Science Team.
- Available to SWOT science team on request by end of 2018.

KaRIn ATBD Development Approach

- ATBDs are generated after prototype algorithms and software have been developed and validated.
 - Validation of prototypes performed using simulated data.
- Baseline ATBDs serve as basis for iteration with Subject Matter Experts (SMEs) from Science Team.

SWOT ATBD Review Approach

- Subject matter experts (SMEs) from science team have been identified by science leads.
 - Responsible for inputs and concurrence of KaRIn ATBDs on behalf of science leads.
 - Provide detailed review and input.
 - Request that SMEs be single lead point of contact with lead author of each ATBD.
 - Consolidate input from other members of science team.
 - Welcome input from all members of science team through the subject matter experts.
 - Resolve conflicts between science team requests.
 - Iterate with algorithm development team as necessary.

KaRIn Low Resolution (Oceans) Science Algorithms

SW

-	Science Algorithm	Description	Subject Matter Experts		
	L2_RAD_GDR	Generates Level 2 radiometer product with measurements of wet troposphere delay and sigma0 atmospheric attenuation from downlinked data.	Shannon Brown B. Picard		
	INT_LR_XOverCal	Generates cross-over calibration product to mitigate systematic errors (e.g., bias, roll/phase, baseline length) from KaRIn and nadir altimeter sea surface height measurements.	Ernesto Rodriguez Pascal Bonnefond Co-I : Christopher Watson		
	L1B_LR_INTF	Generates Level 1B product with 9-beam interferometric, correlation, and power data corrected for instrument effects from 9-beam downlinked data.	Tom Farrar B. Chapron Co-I : A. Mouche		
	L2A_LR_NativePreCa ISSH L2B_LR_FixedPreCalS SH L2A_LR_NativeSSH L2B_LR_FixedSSH	Generates Level 2 sea surface height data products. L2A at KaRIn native center-beam with 2/2 km and 250/500 posting/resolution. L2B on geographically fixed grid with 2/2 km posting/resolution. LR_NativeSSH appends crossover calibration to LR_NativePreCalSSH. LR_FixedSSH appends crossover calibration to LR_FixedPreCalSSH.	Sarah Gille Co-I : Ed Zaron Emmanuel Cosme Co-I : B. Laignel & N. Ayoub		

KaRIn High Resolution (Hydrology) Science Algorithms

SWO

Science Algorithm	Description	Subject Matter Experts
L1B_HR_SLC	Generates Level 1B single-look-complex (SLC) data product with SLC images, calibration information, time-varying platform and radar system parameters, and digital elevation model.	Scott Hensley H. Yésou for the DEM
L2_HR_PIXC	Generates Level 2 pixel cloud data product from SLC product by performing height reconstruction, phase unwrapping, water detection, flagging.	Mike Durand H. Yésou & D. Blumstein
L2_HR_RiverTile L2_HR_RiverSP L2_HR_RiverAvg	Generates Level 2 river data products from pixel cloud data and provides center-line locations, widths, heights, slopes, discharge, and flags for sub-reaches and total reach. _TILE product extends over single tile of data. _SP product extends over single pass over continent. _AVG product aggregates over one basin (or region) within one repeat cycle.	Larry Smith P.A. Garambois & S. Ricci
L2_HR_LakeTile L2_HR_LakeSP L2_HR_LakeAvg	Generates Level 2 lake data products pixel cloud data and provides height, geolocation, and shape. _TILE product extends over single tile of data. _SP product extends over single pass over continent. _AVG product aggregates over one basin (or region) within one repeat cycle.	Yongwei Sheng J.F. Cretaux & H. Yésou
L2_HR_Raster	Generates Level 2 raster product from pixel cloud data product by resampling single-pass data onto a 2-D fixed grid.	Marc Simard S. Biancamaria, M. Grippa, F. Pappa (for wetlands)

ATBD Schedule

- Early to mid 2019: Algorithm Development Team (ADT) developing and validating prototype software.
 - Staggered development approach to algorithms.
 - Iteration with SMEs on radiometer ATBDs has started.
 - Continuous interaction with members of science team at ADT meetings.
- Early to Late 2019: Baseline ATBDs provided to Subject Matter Experts (SMEs) as they become available.
 - Engaging with SMEs as prototypes mature.
 - SMEs coordinate science team inputs with algorithm team.
 - SMEs iterate with algorithm team.
- End of 2019: Release first concurred version of ATBDs.