

SWOT

Lake Products from LOCNES Claire POTTIER, Cécile CAZALS (CS)

LOCNES Lake Observation Cover aNd Extent from Swot

Lake processing overview

3 © cnes

LAKE_TILE software

LAKE_TILE

LAKE_TILE processing – Flow diagram

LAKE_TILE processing steps

LAKE_TILE software – Limitations and on-going work

- Basic selection of pixels: = PixC pixels in PIXC_VEC_RIVER file; therefore:
 - Reservoirs not taken into account
 - Pixel cloud on ocean not removed
 - Cases when entities incompletely processed by RIVER_TILE roughly processed
- Separation of entities: computed in radar geometry
 - Case when 2 or more lakes are interpreted as merged in radar geometry: implementation of height classification

LAKE_TILE software – Limitations and on-going work (cont'd)

- Improved geolocation: processing different between "small" and "large" lakes (****ha, in configuration file)
- Polygon computation:
 - Convex hull
 not satisfaying
 - Basic and improved concave hull computation

 → still some artefacts
 - + time consuming
 - Ongoing work: computation in radar geometry then conversion in ground geometry

7) © cnes

LAKE_TILE software – Limitations and on-going work (cont'd)

Attributes:

- Basic attributes, uncertainties not implemented
- Current work to homogenize attributes with river products: will be implemented when freezed
- Water storage: not yet implemented (see J.-F. Crétaux's talk tomorrow)

ID_LAKE	500029543110001
PRIOR_ID	NULL
OBS_TIME	11:52:33
HEIGHT	-8.939514
H_UNC	NULL
H_NOLAY	-8.939514
AREA	61.4612
A_UNC	1.1957
A_NOLAY	61.4612
AREA_EST	NULL
DELTA_S	NULL
DS_UNC	NULL
NB_PIXC	2433
NB_ICE	0
NB_LAY	0
NB_DARK	0
PARTIAL	0
CT_DIST	52543.617
FQUALITY	NULL

8 © cnes

LAKE_TILE software – Limitations and on-going work (cont'd)

ID_LAKE	500029543110001	
PRIOR_ID	NULL	
OBS_TIME	11:52:33	
HEIGHT	-8.939514	
H_UNC	NULL	
H_NOLAY	-8.939514	
AREA	61.4612	
A_UNC	1.1957	
A_NOLAY	61.4612	
AREA_EST	NULL	
DELTA_S	NULL	
DS_UNC	NULL	
NB_PIXC	2433	
NB_ICE	0	
NB_LAY	0	
NB_DARK	0	
PARTIAL	0	
CT_DIST	52543.617	
FQUALITY	NULL	

- PRIOR_ID = list of lakes from DB that intersect object (default = NULL)
 - Use of <lakeDb_OGRLayer>.SetSpatialFilter(object_polygon)

A-B = observed lakes 1-2-3 = lakes from a priori DB

Object A:

- LAKE_TILE.shp: prior_id = 1
- PIXC_VEC.nc: tag = 1

Object B:

- LAKE_TILE.shp: prior_id = 2;3;1
 [from highest intersection area]
- PIXC_VEC.nc: tag = 1|2|3 [distance between pixel and prior lake centroid]

9 © cnes

LAKE_TILE software – Limitations and on-going work (cont'd)

10 © cnes

cnes

LAKE_SP software

LAKE_SP

Lake processing overview

• coes • • • •

13 © cnes

LAKE_SP processing steps

Lake processing

14 © cnes

TEST CASE

Processing chain

Example – Subset of IGN Carthage DB

17 © cnes

Example – Subset of IGN Carthage DB (cont'd)

Large scale simulator / pass 60 (ASC-R+L)

~ 1 million of pixels (18 tiles) generated in ~2min

19 © cnes

Conclusion and ongoing work

LAKE_TILE and LAKE_SP:

- Prototype version with main blocks, chaining one after the other
- From this summer: work with CNES SDS to integrate into operationnal code (SDS constraints + computational efficiency)
- In parallel: ongoing work to improve geometry and attributes computation
 - > Taking into account the new product content when freezed
 - Harmonize computation with river processing
- Test cases will be widened (continental test cases with large scale simulator to test computational efficiency ; hydrologically significant test cases with HR simulator to validate results quality)

LAKE_AVG:

Development will start automn 2018

LOCNES availability:

- Available to ADT team upon request
- In CNES administrative process to make it available as an open-source