

SWOT

Lake Data product status

Claire POTTIER¹, Sylvain BIANCAMARIA², Phil CALLAHAN³, Joe TURK³, Michael DURAND⁴, Renato FRASSON⁴

¹ Centre National d'Etudes Spatiales

² Laboratoire d'Etudes en Géophysique et Océanographie Spatiales
³ Jet Propulsion Laboratory, California Instritute of Technology
⁴ Ohio State University

· cnes · · · ·

The lake vector products – Single-pass (SP)

Polygon shapefile (WGS_84)

- 1 object = part of a lake/reservoir or "other" observed by SWOT
- Polygons = lake boundary + inner islands boundary
- Lake averaged values

Coverage = same as for river

- Intersection pole-to-pole pass (or orbit?) & continent
- Both swaths

2) © cnes

The lake vector products – Cycle-average (AVG)

Polygon shapefile (WGS_84)

- 1 object = lake/reservoir from DB observed by SWOT during cycle
- Polygons = lake boundary + inner islands boundary: method to compute extent TBD (max or better: see Yongwei's talk tomorrow)
- Cycle-averaged values per lake

Attributes – Basic vs Expert

Identifiers and time

- Identifiers: lake_id (/ obs), prior_id (from DB), grand_id
- Time representations: official format (time_day, time_sec) and understandable (time_string)

Hydro parameters

- Water surface height with respect to geoid and ellipsoid and associated uncertainties,
- Areas and associated uncertainties: detected, total (= detected + dark water area), used to compute height,

4) © cnes

- Cross-track distance,
- Metric of layover effect,
- Storage change and associated uncertainty

Attributes – Basic vs Expert

- Flags: dark water, layover, frozen surface, measurement quality, partial/fully observed, quality of cross-over calibrations
- ***** KaRin σ_0 information:
 - > Radar σ_0 and uncertainty, Radar σ_0 calibration, Radar σ_0 atmospheric correction from model data.

Geophysical references:

- Geoid model height,
- \succ Tides: earth, and pole.

Geophysical range corrections:

Dry and wet tropospheric and ionospheric correction to heights.

Instrument corrections:

Cross-over calibration, KaRin orientation (attitude), Overall instrument height bias, internal calibration.

5 © cnes

On-going work

- Work almost finished on homogenization of attributes between river and lake products
 - > Spring 2019: Product Description Document Rev A.
- When finalized: reported into prototypes to generate test products reflecting this new content

6 © cnes