Diagnosing tidal modulation from high frequency radar

Luke Kachelein Bruce Cornuelle, Sarah Gille, Matthew Mazloff, Eric Terrill Scripps Institution of Oceanography SWOT Science Team Meeting June, 2018

Background image: https://tidesandcurrents.noaa.gov/hfradar/

Conventional view of tides

Global barotropic M2 tide, color = SSH amplitude, white lines = phase lines

Mode-1 internal M₂ tides

Complicated spatial structure of amplitude and phase described by Zhao et al. (2016)

Outline

- Motivation/goals
- Data set: high frequency radar surface current time series
- Methods: harmonic spectral analysis
- Results: spectral characteristics, spatial structure of tidal signals
- Bonus (if there is time): wind and stratification

Relevance to SWOT

- How predictable is the internal tide?
- Low frequency processes, especially the annual cycle, seem to modulate the tidal signal.

• Understanding smaller-scale effects on currents will be imperative for SWOT, due to its unprecedented resolution.

Coastal High Frequency Radar

Coverage (%

HFR Coverage - 6km grid 100 39°1 95 90 85 37°1 80 36°N 75 70 35°N 65 34°N 60 33°N 55 50 124°W 122°W 120°W 118°W CeNCOO

- Coastal HFR stations along the California coast. Measures surface currents using Bragg scattering, radar frequencies of 5-40 MHz.
- Displayed: 6km gridded data, 6+ years hourly sampled, good coverage ~100 km offshore; 2km and 1km data also available online
- Coverage depends on proximity to at least two antennae.
- Useful to assess predictions of internal tide

Total variance of current field

 Uncertainties are sensitive to the distance from antennae, may be unreliable far away or at poor angles.

Sample time series

- Note underlying annual cycle.
- Anomalous observations need to be considered (e.g. antenna upgrade, storms)

Methods overview

- Harmonic analysis of tidal constituents and nearby frequencies to quantify modulation. Account for strong low frequencies and forced peaks.
- Essentially an unconventional Fourier transform, but:
 - Can account for frequencies lower than the fundamental
 - Models exact tidal frequencies
 - Good for data with gaps

Domain-averaged: strong annual and semiannual signal in current, as well as peaks at the diurnal and semidiurnal frequencies. Nearinertial oscillations are apparent.

Rotary spectral characteristics

 Cusp-like behavior near tidal peaks and discrete sidebands indicate modulation. These would be poorly resolved without multiyear records.

Energy at M2

Shows hotspots of tidal energy and spatial scale/structure

Phase of the M₂-coherent surface current as given by harmonic coefficients. The phase structure has spatial scales much shorter than those of the barotropic tide, as inferred from SSH. This implies a significant baroclinic component.

Wind power and removal: preliminary

ERA5:

$$\overrightarrow{u}(t) = \sum_{k=0}^{M} \overrightarrow{g}(k\Delta t) \overrightarrow{w}(t - k\Delta t) + \overrightarrow{r}(t)$$

Current = lagged response*lagged wind + residual

Fonta n and Cornuelle

Summary

- We use harmonic analysis to decompose HFR surface current measurements to evaluate nonstationary tidal energy.
- Near-tidal energy indicates modulation of the internal tide by other processes, especially at the annual frequency.
- The spatial structure of tidal signals suggests significant baroclinicity in tidal surface currents.

The Effect of Stratification

 Average power spectrum (using harmonic method) along glider line 90. Note the strong annual cycle.

35⁸N

30¹⁰

124°W

122⁶W

120⁰W

0.2

0.1

0

118⁴W