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Wavenumber-frequency power spectrum 

shear or rough bottom topography that are the physical
basis for the modified theories. The spur of spectral power
along the dispersion relation in the case of the reduced-
gravity model considered here is investigated in more
detail from monopole experiments in section 4.

Figure 5 shows distributions of the deviation from due
west propagation of the eddies in the eddy seeding ex-
periments. The linear model shows no systematic pref-
erence for meridional deflection, matching the results of
purely westward propagation found for the isolated
Gaussian in Fig. 1. The spread of meridional deflection
angles is evidently attributable to randomness in the in-
terference patterns from the superposition of the waves in
the linear solution. In contrast, the eddies tracked in the
nonlinear model show distinct tendencies for poleward
and equatorward deflection for cyclonic and anticyclonic
eddies, respectively. This is consistent with the observa-
tions that show similarly opposing deflections of cyclones
and anticyclones. However, in the observations, the mean
deflection angle for combined cyclones and anticyclones

is rotated a small but significant amount equatorward
from due west (Chelton et al. 2011). This asymmetry
about due west in the observations cannot be explained
by quasigeostrophic theory because the meridional com-
ponent of Eq. (1) is antisymmetric with a change in height
polarity (h / 2h). The slight equatorward rotation of
the mean deflection angle from due west in the observa-
tions may be an indication of the effects of meridional
advection or the effects of vertical shear on the total po-
tential vorticity gradient vector from ambient currents
(Samelson 2010) that are not included in the zero mean
flow, reduced-gravity model considered here.

Figure 6 shows the distributions of the tracked eddy
speeds normalized by the long Rossby wave phase speed
cx 5 b0L2

R. The mean value of the distribution for the
linear model, m 5 0.54, falls far below the mean value of
the observations for the Northern Hemisphere, m 5
0.74. However, the mean value of the distribution from
nonlinear model, m 5 0.77, shows a significant increase
over the linear model that is comparable to the obser-
vations. The largest difference between the observations
and the nonlinear model is in the variability of the dis-
tributions. The failure of the nonlinear model to capture
the variability of the observations may be attributed to
the simplicity of the nonlinear model, which includes
only a single independent vertical mode and variations
in the Coriolis parameter as the only contribution to the
potential vorticity gradient; or, it could be an indication
of the importance of nongeostrophic effects that are not
included in the model.

The long-term coherence of the isolated eddies, the
wavenumber–frequency spectra from the eddy seeding
experiments, their meridional deflection, and their dis-
tribution of tracked speeds suggest that linearized qua-
sigeostrophic theory is not a viable theory to explain the
observed westward-propagating features. Nearly all of
the observed properties are well explained by nonlinear
quasigeostrophic theory confirming that the observed
signal represents eddies obeying nonlinear dynamics
rather than Rossby waves obeying linear dynamics.

3. Monopoles

a. The three states of evolution

The interest in eddies on a b plane has generated a long
history of analytical and numerical models attempting to
elucidate some of their basic properties, such as ampli-
tude decay and propagation speeds and directions. The
two-dimensional quasigeostrophic potential vorticity
equation [Eq. (1)] lacks many of the complexities asso-
ciated with multilayer quasigeostrophic or primitive
equation models yet remains sufficiently complex that the

FIG. 4. Zonal frequency–wavenumber spectra for SSH from the
merged Ocean Topography Experiment (TOPEX)/Poseidon–
European Remote Sensing Satellite (ERS) satellite altimetry data
along 248N in the western subtropical Pacific Ocean. The solid line
is computed from the radon transformation. The three dispersion
relations shown are from standard Rossby wave theory, the rough
bottom topography theory of Tailleux and McWilliams (2001),
and the vertical shear-modified theory of Killworth et al. (1997)
extended to the case of nonzero zonal wavenumber (Fu and
Chelton 2001), in order of increasing frequency along the left-hand
side of the plot.
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Linear theory (dispersive at short wavelengths) 

Non-dispersive propagation at 
 long-wave speed (approximately), 
 apparently indicating (weakly) 
 nonlinear dynamical balance 
 
Can we detect and track 
  coherent features directly? 
 
Does the nondispersive line end 
 because the resolution limit of the 
 data is reached? 



(41,047 total) 
Cyclonic and Anticyclonic Eddies with Lifetimes ≥ 16 weeks 

Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011. Progress in Oceanography, 91, 167-216. 

Now available through AVISO: https://www.aviso.altimetry.fr/en/data/products/value-added-products.html 



Normalized mean and std dev life cycles from 
altimeter data  and  random-walk model 

with equal lifetimes, fÂkgL 5 fÂk: Lk 5 Lg; for each
lifetime L 5 JDt, 4# J # 156. The ensemble-mean AL(tj)
and standard deviation SL(tj) over each of these sets at
each weekly time step tj were then computed, giving
a single pair of mean and standard deviation time series of
length J at each lifetime L 5 JDt:

AL(tj) 5 meanfk:L
k
5LgfÂk(tj)g, j 5 1, 2, . . . , J; and

(2.1)

SL(tj) 5 (meanfk:Lk5Lgf[Âk(tj)]2g2 [AL(tj)]2)1/2,

j 5 1, 2, . . . , J .

(2.2)

The respective lifetimes L were also each normalized
to unity by transforming the weekly time points tj to a

dimensionless time t according to tj 5 (tj 2 1/2)/L for
each lifetime L. This convention implies that t1 5 1/(2J)
and tL 5 1 2 1/(2J) and preserves an interpretation of the
original time series points as nominal means over 1-week
intervals centered on the observation times. An alter-
native convention would set t1 5 0 and tL 5 1, effec-
tively redefining the dimensional lifetime of each eddy as
L 2 1 week; the two conventions yield essentially identi-
cal results. The normalized mean and standard deviation
time series were decomposed into time-symmetric and
time-antisymmetric parts, according to As(t) 5 [A(t) 1
A(12t)]/2, Aa(t) 5 [A(t)2A(1 2 t)]/2, Ss(t) 5 [S(t) 1
S(1 2 t)]/2, and Sa(t) 5 [S(t) 2S(1 2 t)]/2, where the
subscripts s and a denote time symmetric and time anti-
symmetric, respectively.

The dimensionless ensemble-mean and standard de-
viation amplitude time series AL and SL, computed by

FIG. 2. (a) Three amplitude time series from altimeter-tracked eddies. For these eddies, observations from em-
bedded RAFOS floats [numbers 73, 106, and 109 of Collins et al. (2013)] during the indicated time periods (horizontal
lines) confirm their coherent Lagrangian character. (b) Ensemble mean AL and std dev SL of normalized amplitude
vs dimensionless time t for altimeter-tracked eddies for each lifetime L, 16 # L # 80 weeks. (c) As in (b), but
for stochastic model with r 5 0:06 and B0 5 0:6. (d) Overall mean time-symmetric (As,Ss; black solid) and time-
antisymmetric (Aa,Sa; black dashed) normalized ensemble mean (As,Aa; 0 , t , 0:5) and std dev (Ss,Sa;
0:5 , t , 1) of normalized amplitude vs dimensionless time t for all altimeter-tracked eddies with 16–80-week
lifetimes, computed from weighted averages of AL and SL. The antisymmetric parts Aa and Sa are uniformly small
(dashed lines). The corresponding overall mean amplitude and std dev time series are also shown for the stochastic
model with r 5 0:06 and B0 5 0:6 (blue) and for the dynamical simulation (green).
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Random walk with linear damping 
 

(first-order autoregressive/AR1 process) 
A(tj+1) = A(tj) + �j � rA(tj)

= ↵A(tj) + �j ,

0 < ↵ = 1� r < 1
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The AR1 parameter α determines autocorrelation structure for A, 
independent of subsequence (“eddy detection and tracking”) analysis. 



Random walk with linear damping 
 

(first-order autoregressive/AR1 process; Markov process) 
⌘j+1 = ↵⌘j + �j

< ⌘2j+1 > = ↵2 < ⌘2j > + ↵ < ⌘j�j > + < �2j >

= ↵2 < ⌘2j > + �2
�

Rate of forcing independent of discrete time-step 

Z t

{variance from forcing} dt0 =

Z t=N⇥�t

< �2j > dt0

= N ⇥ �2
�

=
�2
�

�t
t

= �2
W t, �W =

��

(�t)1/2

�W ⇡ 2.5⇥ 10�3cm s�1/2

A(tj+1) = A(tj) + �j � rA(tj)
= ↵A(tj) + �j ,

0 < ↵ = 1� r < 1



Generalization: a stochastic field model2 

@⌘

@t

+ cR
@⌘

@x

= �R⌘ + F (x, y, t)

Here F(x,y,t) is a stochastic forcing function with: 
 

 (1) wavenumber power spectrum chosen to match observed 
  SSH spectrum 
 (2) random phase for each spectral component at each (weekly) 
  time step 

 
Solve along characteristics: 
 
 
 
 
Same difference equation as before, but with random increment field. 
 

dX

dt

= cR, X(t = 0) = x0,

⌘(x0 + cRtp+1, y0, tp+1) = ↵⌘(x0 + cRtp, y0, tp) + �

F (x0 + cRtp, y0, tp),

2(Samelson, R. M., M. G. Schlax, and D. B. Chelton, 2016.  A linear stochastic field 
  model of mid-latitude mesoscale sea-surface height variability. J. Phys. 
  Oceanogr., 46, 3103–3120, doi: 10.1175/JPO-D-16-0060.1.) 



Eddy number distribution vs. lifetime 
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Eddy length scale (radius) and amplitude distributions 
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 is a stochastic forcing function with fixed amplitude 
(unit time-mean spatial standard deviation) and 
autocorrelation timescale 
(Morten, Arbic, and Flierl, 2017; Lilly, 1969) 

Consider simplest nonlinear dynamical theory: 
reduced-gravity quasi-geostrophic model 

@

@t

(r2
 �  ) + �

@ 

@x

= �J( ,r2
 ) +

F0,⌧

⌧

1/2
� r  +Dens

F0,⌧

⌧

Three parameters: 
 
 
…plus spatial (wavenumber) structure of  

� = �⇤L
2
R/UF r = rQG⇤LR/UF ⌧ = ⌧QG⇤UF/LR

F0,⌧

�⌘ = 0.15, U⌘ = 0.21 m s

�1
for �⌘ = 0.07 m at 35

�
N

Require: 

and for LR = 40 km 



QG simulations:  guided initially by Morten, Arbic, Flierl (2017), 
then by comparison with Chelton et al. (2011) eddy tracking analysis 
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QG eddy identification and tracking 
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AVISO zonal-wavenumber - frequency spectra 
(Chelton) 

Model spectra 
τ=0.1, r =0.02 

τ=1.0, r =0.02 

τ=10, r =0.02 

τ=10, r =0.005 
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AVISO zonal-wavenumber - frequency spectra 
(Chelton) Model spectra 

τ=10, r =0.005 



Frequency vs. zonal-wavenumber spectra: 
Linear inversion of linear and nonlinear models 

ψ

Ft 

L-1ψ

Linear Nonlinear 



Linear-inverted AVISO and model spectra 
L-1ψ

Model: 

τ=10, r =0.005 



Linear-inverted AVISO spectra: 
 

Evidence of propagating objective analysis filter visible => loss of useful information? 

L-1ψ

Model: 



Linear-inverted model spectra: unsmoothed and smoothed 

τ=10, r =0.005 

Gaussian smoothing, 200 km in k, 30 d in ω, centered on ω = cR k.   

NB: 

τ=10, r =0.005 

The filter transfer function for the combined, sequential filtering, first along characteristics and23

then in time at fixed x, is the product of (3) and (5),24

ŴXt(k,w) = ŴX(k,w)Ŵt(k,w) =
1

pLT
exp

⇢
�1

4
L2(k� c�1

0 w)2 � 1
4

T 2w2
�
. (6)

The space-time smoothing function for this operation can be written as a single function25

WXt(x, t;x0, t 0), where26

WXt(x, t;x0, t 0) = d (x� c0t)exp
⇢
�
⇣ x

L

⌘2
�

d (x0)exp

(
�
✓

t 0

T

◆2
)
, (7)

so that WXt(x, t;x0, t 0) is essentially the product of the two smoothing functions WX(x, t) and27

Wt(x, t), with the second set of space-time variables (x0, t 0) introduced to allow the second smooth-28

ing operation. The filter transfer function is then obtained by two sequential space-time Fourier29

transforms,30

ŴXt(k,w) =
Z Z

e�ikx0+iwt 0
Z Z

e�ikx+iwtWXt(x, t;x0, t 0)dxdt dx0 dt 0. (8)

A meridional smoothing factor exp(�y2/L2) can be included but, as long as the characteristics31

are purely zonal, is independent of t and results in a transformed factor exp(�1
4L2l2), where l is32

meridional wavenumber.33

The Gaussian decay scales L and T that correspond to Parzen-smoother half-power wavelengths34

and periods LP and TP may be computed from eq. (C.5) of Chelton et. al (2017):35

(L,T ) = 0.187(LP,TP). (9)

Thus, for Parzen-smoother half-power wavelength LP = 200 km and period TP = 30 d, the corre-36

sponding Gaussian decay scales are L = 37.4 km and T = 5.6 d.37
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Original and linear-inverted AVISO spectra 

model 

τ=10, r =0.005 



Conclusions 
1.  A connection is made between linear stochastic and nonlinear quasi-

geostrophic turbulence models of SSH variability. 

2.  Observed autocorrelation and spectral structures are broadly reproduced by 
the nonlinear simulations when the model is forced by stochastic fluctuations 
near the deformation radius. 

3.  The flux of energy into the gravest mode of the ocean mesoscale can be 
represented as a stochastic forcing with                                                . 

4.  The ocean mesoscale is nonlinear: nonlinearity removes energy along the 
linear dispersion relation and deposits it elsewhere. 

5.  There appears to be a visible signature of signal propagation characteristics 
assumed by the objective analysis procedure in the AVISO altimeter SSH 
dataset. 

6.  Much remains to be learned – SWOT will help! 

�W ⇡ 2⇥ 10�5m s�1/2


