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Wavenumber-frequency power spectrum

AVISO gridded altimeter data

Non-dispersive propagation at
long-wave speed (approximately),
apparently indicating (weakly)
nonlinear dynamical balance

Can we detect and track
coherent features directly?
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Does the nondispersive line end
because the resolution limit of the
data is reached?
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Linear theory (dispersive at short wavelengths)




Cyclonic and Anticyclonic Eddies with Lifetimes = 16 weeks
(41,047 total)

Number Cyclonic=21126 Number Anticyclonic=19921
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Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011. Progress in Oceanography, 91, 167-216.

Now available through AVISO: https://www.aviso.altimetry.fr/en/data/products/value-added-products.html




Normalized mean and std dev life cycles from
altimeter data and random-walk model

r=0.06 (0=0.94), Bo=0'6

Std dev

dimensionless amplitude and std dev
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Random walk with linear damping

(first-order autoregressive/AR1 process)
A(t;) + 6; — rA(ty)
aA(t;) + 05,

O<a=1—-r<l1

The AR1 parameter a determines autocorrelation structure for A,
independent of subsequence (“eddy detection and tracking”) analysis.

Observations
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Random walk with linear damping
(first-order autoregressive/AR1 process; Markov process)

af <y >4 a<nb; >+ <05 >
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—1/2

ow ~ 2.5 x 10 cm s

Rate of forcing independent of discrete time-step




Generalization: a stochastic field model?

Here F(x,y,t) is a stochastic forcing function with:

(1) wavenumber power spectrum chosen to match observed
SSH spectrum

(2) random phase for each spectral component at each (weekly)
time step

Solve along characteristics:

n(xo + crtp+1, Y0, tp+1) = an(xo + crtp, Yo, tp) + 6t (2o + Crlp, Yo,tp);

Same difference equation as before, but with random increment field.

2(Samelson, R. M., M. G. Schlax, and D. B. Chelton, 2016. A linear stochastic field
model of mid-latitude mesoscale sea-surface height variability. J. Phys.
Oceanogr., 46, 3103-3120, doi: 10.1175/JPO-D-16-0060.1.)



Fraction of eddies

Eddy number distribution vs. lifetime
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Eddy length scale (radius) and amplitude distributions

Nonlinearity
(absent in
linear model)
sustains long-
lived coherent
features?
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Consider simplest nonlinear dynamical theory:
reduced-gravity quasi-geostrophic model

VAl is a stochastic forcing function with fixed amplitude
(unit time-mean spatial standard deviation) and
autocorrelation timescale

(Morten, Arbic, and Flierl, 2017; Lilly, 1969)

Three parameters:

Require:

o, = 0.07 m at 35°N
and for L = 40 km



MAF

QG simulations: guided initially by Morten, Arbic, Flierl (2017),

g, Run 3 M r=0013
) 5 o T = 0.034
( > L
g, Run 1 ¢, Run 2 ;,» ),
; ,Run2 — L
N ;Y _ v
r=0.0015 r=0.0004 AP o
T =0.855 7 =0.0855 I
k:=6/Lg KO Ditfen A * =

D ‘\)

-)

then by comparison with Chelton et al. (2011) eddy tracking analysis
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QG eddy identification and tracking

tracks eta OP03aRK .v0.1.ASCll.nc

n, =a (L24L;2)(1+b)1+b exp(LiL,)]

tracks eta OP03aRK .v0.1.ASCll.nc

(@.0)=(4.0.25), (L, L,)=(75,30) wks
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tracks eta OP03aRK .v0.1.ASClIl.nc
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tracks eta OP03aRK .v0.1.ASCll.nc amplitude innovation distribution
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AVISO zonal-wavenumber - frequency spectra
(Chelton)
Model spectra
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AVISO zonal-wavenumber - frequency spectra
(Chelton)
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Frequency vs. zonal-wavenumber spectra:
Linear inversion of linear and nonlinear models

Nonlinear



Linear-inverted AVISO and model spectra

t=10, r=0.005




Linear-inverted AVISO spectra:

Evidence of propagating objective analysis filter visible => loss of useful information?

Model:




Linear-inverted model spectra: unsmoothed and smoothed

t=10, r=0.005 t=10, r=0.005

Model PSD(z,F,F, ):OP08aRK Smoothed model PSD(7,F,F, ):OP08aRK Model PSD(z,F,F, ) :0P08aRK Smoothed model PSD(r,F.F, ) :0P08aRK
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Original and linear-inverted AVISO spectra
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Conclusions

. A connection is made between linear stochastic and nonlinear quasi-
geostrophic turbulence models of SSH variability.

. Observed autocorrelation and spectral structures are broadly reproduced by
the nonlinear simulations when the model is forced by stochastic fluctuations
near the deformation radius.

. The flux of energy into the gravest mode of the ocean mesoscale can be

represented as a stochastic forcing with ow ~ 2 X 10~ 5m s~ /2 |

. The ocean mesoscale is nonlinear: nonlinearity removes energy along the
linear dispersion relation and deposits it elsewhere.

. There appears to be a visible signature of signal propagation characteristics
assumed by the objective analysis procedure in the AVISO altimeter SSH
dataset.

. Much remains to be learned - SWOT will help!



