

An Observing System Simulation Experiment to evaluate the impact of SWOT in a regional data assimilation system

M. Benkiran, P. Y. Le Traon and E. Rémy Mercator Ocean, Toulouse, France

Study performed as part of CNES and Mercator Ocean partnership

Motivation of our study

- Prepare the assimilation of SWOT in Mercator Ocean analysis and forecasting systems.
- Combine SWOT, nadir altimeter and in-situ data with high resolution models to allow a dynamical interpolation of SWOT data and a description and forecast of the ocean state.
- This is an essential step to develop a wide use of SWOT data both for ocean research and applications.
- Approach based on the development of innovation data assimilation methods and on the use of Observing System Simulation Experiments (OSSEs).

- OSSEs are powerful tools to evaluate the impact of the future observing system.
- OSSEs use two different models. One model is used to perform a "NatRun" run = real ocean. The "NatRun" run is sampled in manner that mimics the future observing system yielding synthetic observations. Observation errors added to these synthetic observations.
- Synthetic observations are simulated into the second model (assimilation run) and the model performances is evaluated by comparing it against the "NatRun" run.
- OSSEs are also important tools to test the capability of data assimilation systems to effectively merge different types of observations with the models to produce improved ocean analyses and forecasts.

- Description of the OSSEs protocol.
- Impact of the assimilation of the SWOT on :
 - ✓ Ocean Forecasts and Analysis
 - ✓ The small mesoscale signal.
 - Dynamical data interpolation.
 - ✓ On the sub-surface fields
- ✤ Impact of the assimilation of the SWOT data on the model with high-resolution (1/36°).
- Conclusions and future works.

(Reduced order Kalman Filter (SEEK formulation))

> Assimilation of SWOT performs much better than the assimilation of 3 altimeters.

- ✓ Reduction of 5-day SSH <u>forecast</u> errors ~25%
- ✓ Reduction of SSH <u>analysis</u> errors ~45%

(see Poster, 28)

Assimilation of SWOT+ 3 Nadir : good representation of the small scales

Zonal Velocity Impact : Section N-S at 16°W; [51°N-55°N]; 08/11/2009...

MERCATOR

SSH and Current : NATL60 vs OSSE (North Atlantic Drift, 30/04/2013)

NatRun (1/60°)

FreeRun (Control, 1/36°)

mercator-ocean.eu / marine.copernicus.eu

SSH and Current : NATL60 vs OSSE (North Atlantic Drift, 30/04/2013)

OCEAN

Assim : SWOT+ J2, S3a, S3b

Conclusions and Perspectives

Improvements due to SWOT data assimilation :

- > Assimilation of SWOT performs much better than the assimilation of 3 altimeters.
- Assimilation of SWOT+ 3 Nadir : good representation of the small scales
- > Better dynamic interpolation through model dynamics
- > Best reconstruction of vertical and horizontal velocity in the deep ocean

Large (potential) impact for ocean analysis and forecasting systems

Perspectives :

- ✓ Develop OSSE with the global model (1/12°)
- ✓ Full use of SWOT simulator (all errors not only Karin).
- Continue improving the data assimilation system (non correlated errors, ...etc)

Thank you for your attention

http://www.mercator-ocean.fr mbenkiran@mercator-ocean.fr

mercator-ocean.eu / marine.copernicus.eu

Synthetic Observation : JPL Simulator (Observation; Karin Noise, Error...)

15°W

0.03

0.04

40°N

39°N

38°N

37°N

36°N

35°N

34°N

17°W

-0.05 0.00

16°W

0.05

m

0.10 0.15

0.00

0.01

0.02

m

OSSE: <u>2km × 2km</u> Resolution 1.0 Cm Rms in the inner part of the swath to near 3.0 cm on outer edges of swath)