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Vertical velocity in the ocean

Vertical exchanges in the ocean

 supply nutrients to the euphotic zone

 subduct matter in the deep ocean

 can be strong when driven by meso 
and submesoscale dynamics

→ vertical velocity is driven by di�erent 
sources:

 deformation of the main �ow at 
di�erent vertical and horizontal scales

 surface forcing

 Inertia-gravity waves

 …

→ it is di!cult to observe 

 localized, small spatial scale

 low intensity

 rapid variability

nutrients

light



w is usually inferred through calculation

 Surface Quasigeostrophy (Lapeyre and Klein 2006; Klein et al. 2009)

 Inverse method (Thomas et al. 2010) 

 the Omega equation (the more widely used)

How well does the Omega equation represent the 
vertical circulation in terms of scale, intensity and 
pattern?

 how much depends on the dynamic of the �ow ?

 how much depends on the method and the available data? 

Vertical velocity in the ocean



The Omega Equation

Di�erent forcing can drive vertical velocity:

 TW : « frontogenesis»

AG : Deformation of the thermal wind imbalance

FL : Turbulent fluxes of momentum and buoyancy

TD : Trend of the thermal wind imbalance

 Symmetric instability, inertial and sub inertial dynamics, …
 Can't be inferred from observations

Can be prescribed from atmospheric fluxes (wind, heat fluxes)

 geostrophic velocity :

 total velocity :
Deformation of the flow

 Giordani et al. (2006)



The Omega Equation

Di�erent forcing can drive vertical velocity:

 Quasi Geostrophic Formulation : ω
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The Omega Equation

Legal et al., 2007 : 
- 2D QG
- 1-2km resolution 
- North East Atlantic

Pallàs-Sanz et al. 2010:
- Generalized
- 3-11 km resolution
- California Current System

Benitez-Barrios et al., 2011 : 
- QG
- 20km resolution 
- SouthEast of the Canary 
islands 

Pascual et al., 2015 :
- QG
- Gulf Stream
- ARMOR3D (satellite 
+ in situ product) 
- 35km resolution 
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- the majority of the papers use the QG formulation.

- dataset resolution: (O(1-10km))

- wmax: (O(10 m/day))

- finest scale on the horizontal: (O(10 km)) 



‣ numerical code : NEMO v3.5"

‣ horizontal grid : 1/60° (dx = 0.8-1.6 km )

‣ vertical grid : 300 levels (dz = 1m to 30 m)

‣ realistic boundary conditions and atmospheric 
forcing

‣ 2 series of 11 consecutive daily averaged 
outputs in June and December

NATL 60 Model configuration and numerical experiment

Surface relative vorticity in winter  Courtesy of J. LeSommer
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NATL 60 : model vertical velocity on June 10th 2008
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NATL 60 : model vertical velocity on December 10th 2008
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Vertical velocity on December 10th 2008

LMX (Gulf Stream) AZO (Açores) OSM (North East Atlantic)

W
model

-60       -30       0        30        60
m/day

-4         -2        0         2         4
m/day

  -12       -6       0       6       12  
m/day



Vertical velocity on December 10th 2008

ω
QG

W
model

LMX (Gulf Stream) AZO (Açores) OSM (North East Atlantic)

-60       -30       0        30        60
m/day

-4         -2        0         2         4
m/day

  -12       -6       0       6       12  
m/day



Vertical velocity on December 10th 2008

W
model

ω
NG

ω
QG

LMX (Gulf Stream) AZO (Açores) OSM (North East Atlantic)

-60       -30       0        30        60
m/day

-4         -2        0         2         4
m/day

  -12       -6       0       6       12  
m/day



Vertical velocity on December 10th 2008
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- Geostrophic and Generalized formulation very similar

- Submesoscale vertical velocities not captured, even with an 

ideal Geostrophic or Generalized Q vector (!)   



Spectral coherence between wmodel and ω below the mixed layer in the four regions : 

40 km
40 km
30 km
25 km

NaN
50 km
40 km
18 km

JUNE

DECEMBER

→ Structures larger than 40 km are well 
reproduced

→ They represent 60 to 90% of the 
variance depending on the region

→ the reconstruction from deformation 
has different skills depending on the 
region

→ improvement due to the inclusion of 
the others terms (QG vs NG) is also 
region dependant



Not really !

→ The omega equation doesn't reproduce well the submesoscale vertical velocity (below few tens of 
kilometers) in any dynamical regime.

→ In some regimes these small mesoscale and submesoscale (below 40 km) features account for 
up to 30 % of the variance of the field. 

→  The vertical velocity inferred from the omega equation represents well the mesoscale energetic 
patterns. Structures larger than 40 km tend to have a spectral coherence above 0.6

Who is the culprit ?

→  IGWs seem to be strongly coupled to balanced motion in the low energetic, finer scale regimes. 
Their contribution in the Q vector is extremely difficult to quantify (and transforms the problem in a 
prognostic equation).

     

Consequences for SWOT-based in situ experiments of vertical velocities

→ Energetic, « large mesoscale » region : Classical Omega equation OK. Neglecting ageostrophic 
(i.e., non-SWOT) contribution seems also OK.

→  « Small and sub- mesoscale » : Omega equation approach may be misleading. Possibly, the in 
situ strategy should be built for optimally constraining an assimilation scheme, not the omega 
equation.  

 →  Need for «ground true » of vertical velocities or fluxes (swarms of 3D drifters look quite 
promising) . 

Conclusions

Is the Omega equation the good framework for the experimental 
calculation of vertical velocities ?



How important are the differences between w and ω for the estimation of vertical fluxes? 

Can we investigate the (missing) trend term of the generalized omega equation ?

New observationnal networks :

→ how is the solution impacted by a reduced resolution in subsurface while the surface information stays 
high resolution.

→ what kind of in situ information would be needed to resolve w depending on the regime.   

Q vertical variability

→ how to propagate the inforation on the subsurface ?

→ can vertical modes of variability be identified ? 

Conclusions



Boundary conditions

- Depending on the region, boundary conditions account for 20% to 60% of error

- Dirichlet bottom condition (w=0) is more predictable (the deeper the better)

- Neuman bottom condition (d
z
w=0) can be much better (LMX: Gulf Stream)

LMX AZO REK OSM

– Dirichlet (w=0)
– Neumann (dzw=0)

December

June



Preliminary work: particule advection. M. Van Hove & A. Riad

Horizontal sections at 225 m depth Vertical sections
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How important are the differences between w and ω for the estimation of vertical fluxes? 

Can we investigate the (missing) trend term of the generalized omega equation ?

New observationnal networks :

→ how is the solution impacted by a reduced resolution in subsurface while the surface information stays 
high resolution.

→ what kind of in situ information would be needed to resolve w depending on the regime.   

Q vertical variability

→ how to propagate the inforation on the subsurface ?

→ can vertical modes of variability be identified ? 

Ongoing work


