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Why do we need to filter the uncorrelated noise?
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the SSH derivatives to:
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SSH_obs [m] (pseudo-SWOT data) of cycle 2
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• Pass 15 subdomain spatial 
spectra average of 117 cycles 

• SWOT simulated data resolve 
wavelengths > 60 km. 


• Significant improvement 
compared to standard altimeter 
gridded fields that resolve 
wavelengths > 150-200 km 
(Chelton et al., 2007).  


• 60 km cut-off wavelength  
Laplacian Diffusion filter
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SSH_obs [m] (pseudo-SWOT data) of cycle 2
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—> need to 
investigate further:


Method that better 
preserves aaathe 
gradients and their 
intensities.



—> can penalize order 1, 2 or 3 or a combination
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—> function we minimize:

Filtering: Derivatives penalization



• Fast-sampling phase 
(SWOT simulator (Gaultier 
and Ubelmann, 2015))


• Season specific dataset 
—> Summer 2012
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Lambda 1 = 2
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(Normalized by RMSE of non-filtered SSH)

Filtering results: penalization order 1
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Filtering results: penalization order 1
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Filtering results: penalization order 1 + 2

(Normalized by RMSE of non-filtered SSH)

Lambda 1 = 25
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Filtering results: penalization order 1 + 2
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Filtering results: penalization order 1 + 2
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Lambda 2 = 400
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Filtering results: penalization order 1 + 2
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Filtering results: penalization order 1 + 2



Alternative method: Convolutional 
Neural Networks for restoring SWOT

Machine Learning methods are getting an increasing interest thanks 
to deep learning techniques


(R. Lguensat)
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Preliminary data assimilation results: (QG model)

From 1st October 2012 to 1st January 2013
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(S. Metref)
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• KaRIn (uncorrelated) noise filtering important!  

• Filtered pseudo-SWOT resolves wavelengths of 60 km in 
the western Mediterranean and lower! 

• CNN: alternative method to remove noise


• Data assimilation methods:


• Remove correlated errors


• Obtention of 2D gridded maps


• Open source: Denoising tools will be shared with the submitted 
paper. https://github.com/LauraGomezNavarro 

Conclusions
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Stay tuned for youtube videos! 
https://tinyurl.com/MEOM-IGE 

Thank you!
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Filtering: Derivatives 
penalization

• ; hobs = SSH_obs (Pseudo-SWOT dat to be filtered)             
h => pre-conditioning —> Gaussian-filtered image


• Other info.??
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Filtering: Derivatives 
penalization

• Choice of parameters
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Filtering: Derivatives 
penalization
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Choice of parameters: lambda 

 —> L2 norm calculation



Filtering: Derivatives 
penalization
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2 orders of 
magnitude

1 order of 
magnitude
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Relative vorticity (normalized by f)
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Relative vorticity (normalized by f)



Part 2 

• SWOT multi-platform experiments prior to launch are required to prepare 
CAL/VAL and better characterize the area(s) of study 

• Pseudo-SWOT data: 
- SWOT-swath filter 
- Internal waves signal: new SWOT simulations with a global HYCOM 

simulation including tides. (B. Arbic) 

• Joint experiment in 2018 (SW Mediterranean Sea):  Spain (PRE-SWOT, 
MINECO) and France (BIO-SWOT, CNES) + others?. Integrate competences 
(ship, ADCP, gliders, drifters, underway CTD, underway phytoplankton 
community, remote sensing, modelling…) 

Summary
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Filtering results: penalization order 1

Lambda 1 = 25
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Filtering results: penalization order 1

Lambda 1 = 100

!52



!53

Filtering results: penalization order 1 
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Filtering results: penalization order 1 + 2
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No assimilation
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Assimilation


