River discharge and bathymetry estimation from variational assimilation of SWOT altimetry observations

Larnier K, Monnier J., Garambois, P.-A.

Methods

- Data and inverse problem
 - Data : SWOT-like measurements
 - Synthetic errors or Instrument Simulator error budget
 - *Zr*, *P*, *W*, *p* at RiverObs node scale (~ 200m) (+ $S_{r,p}$ at reach scale)
 - Inverse problem
 - Infer discharge $Q_{r,p}$ as well as $A_{r,0}$ and Strickler coefficient $K_r(h)$

Methods

- Hierarchical modeling and optimization
 - 1D full Saint-Venant in (A,Q) variables Preissmann or HLL scheme - Variaionnal Data Assimilation (VDA)
 - Unknowns :

$$c = [(Q_{in,0}, ..., Q_{in,P}); (b_1, ..., b_R); (\alpha, \beta)]^T$$

• Optimization problem :

$$min_{c}j(c) = \frac{1}{2} \| (Z(c) - Z_{obs}) \|_{R}^{2} + \gamma \, j_{reg}(c)$$

- Preconditioning using *a-priori* covariance operators.
- low-complexity (0.5D) model Low-Froude assumption

$$c_{r,p} \cdot K_{r,p}^{3/5} A_{r,0} + d_{r,p} \cdot K_{r,p}^{3/5} = Q_{r,p}^{3/5}, \quad \forall (r,p)$$

Operational chain for estimations of discharge globally

Methods

- Both priors perform well on this setup.

x (km)

- Better accuracy with the Low-Froude prior.

- Both priors perform well on this setup.

 Sacramento River (US) **Identifiability maps**

175

125

75

50

25

1600

1400

1200

1000

0.0004

0.0003

0.0002

0.0001

120

140

160

target

estimate

prior

100 120

x(km)

140

Inflow, Sacramento River

40 60 80

- Validation of the "low-complexity" model
 - Calibration using VDA results
 - Validation on remaining observations in datasets (9 months)

Good accuracy of the inferred discharge values using complete chain.
Low-complexity model is really fast (~5 microseconds / reach / pass).

Towards global application

- Global/Local databases are available
 - HYDRoSWOT (North America)
 - Discharges and Stages
 - Rating curves
 - Low-Froude and Manning-Multi priors
 - GRDC (Global)
 - Discharges only
 - Statistical rating curves
 - Manning-Multi priors

Towards global application

• Enrichment of the SWOT river database

Inferred A_o and K for the low-complexity model can be applied to other models.
Spatial interpolation/extrapolation using global databases.

Conclusion and perspectives

- Conclusion
 - Robust hierarchical 0.5D-1D modeling.
 - Accuracy improved using priors derived from the lowcomplexity (0.5D) model and ancillary databases.
 - Identifiability maps improve the accuracy and allow estimation of discharge between overpasses.
 - Real-time estimation is possible globally using the lowcomplexity model.
- Perspectives
 - Sensitivity to priors.
 - Global estimations of the parameters.
 - AirSWOT and in-situ data.

References

- K. Larnier, J. Monnier, P.-A. Garambois. "River discharge and bathymetry estimations from swot altimetry measurements". *Submitted*.

- P. Brisset, P.-A. Garambois, J. Monnier, H. Roux. "Identifiability and assimilation of sparse altimetry data in 1D Saint-Venant river models". *Accepted* in Advances in Water Ressources.

- P.-A. Garambois, J. Monnier. "Inference of effective river properties from remotely sensed observations of water surface". Advances in Water Ressources, 79, 103-120, 2015.