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Part	I	– To	generate	inputs	
for	the	simulator

Part	II	– To	produce	
SWOT	data

Part	III	– To	use	
SWOT	data

Step	1:
Hydraulic	simulations	with
SIC2 ,	Mascaret,	Rubar,	
Telemac 2D

Step	2:
To	spatialise /	interpolate	
water	levels	from	the	
hydraulic	1D	/	2D	model	
into	lat-lon rasters

Step	1:
To	select	tracks
To	produce	the	pass	plan

Step	2:
To	simulate	the	
interferometric	
measurement

Step	3:
To	calculate	water	levels	

Step	1 :
To	average	water	levels	
(pcg)

Step	2:
Comparison	SWOT_HR	
simulator	vs	Model	data

Step	3:
Data	Assimilation

Objective: to	improve	the	estimate	of	the	discharge	in	1D	and	2D	
models	by	assimilating	SWOT	data	



2D	Model

To	interpolate	on	SWOT-HR	input	grid
• Transform	an	unstructured	grid	into	a	

structured	grid	(Telemac)
ü Method	developed	at	CERFACS	

using	Open-Palm/CWIPI	coupler

1D	Model

To	interpolate	1D	outputs	on	a	2D	domain
• Requires	georeferenced	lines	to	project	

the	1D	outputs	on
ü Method	developed	at	CERFACS	

using	Grass/Qgis scripts

Requires:
o DEM	of	the	area	of	interest
o Profiles	of	the	bathymetry
o Outputs	from	the	hydraulic	model

Part	I:	To	generate	inputs	for	the	simulator

Generate	a	water	mask
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Terre/eau						Eau	

• Comparison between SWOT-HR and hydraulic model outputs : requires consistency
between spatial scales

• Reduction of the pixel errors from metres to centimetres

Averaging	the	elevations	by	sections

Part	III	– To	use	SWOT	data

Free	surface	elevation	map Associated	errors
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Terre/eau						Eau	

SWOT-HR	outputs	with	
geolocation	of	cloud	points
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Consistency	between	the	spatial	scale

River	centre	line	nodes



Water	level	average	by	5	km	sectionsWater	level	average	every	200	m

Comparison	with	the	1.5D	model	Mascaret

Mascaret
Averaged	data

Mascaret
Averaged	data



Uncertainties	in	hydrology	modelling
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Observations Model

• Epistemic uncertainty
• Random uncertainty

• Sparse and imperfect 
• Relation between 
observations and model 
outputs

Data	assimilation:	optimal	combination	of	observations	and	model a	priori	to	
determine	the	best	estimate	of	a	dynamical	system	

To	identify	and	to	quantify	the	major	sources	of	uncertainty	in	hydrology	solver
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Uncertainty	reduction	with	Data	Assimilation
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To	reduce	the	major	sources	of	uncertainty	in	hydrology	solver

time

Model	state

• Variational methods • Sequential	methods
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Uncertainty	reduction	with	Data	Assimilation
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• Sparse and imperfect 
• Relation between 
observations and model 
outputsreality

model 
forecast

Diagnostic
measurements

analysis

Time

Stochastic	estimate	of	the	covariance	matrix:	Ensemble	Kalman Filter	(EnKF)

Implementation:	EnKF requires	numerous	model	integrations

Classical	way:
Monte	Carlo	sampling	
with	Ne members
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• Sparse and imperfect 
• Relation between 
observations and model 
outputs

Stochastic	estimate	of	the	covariance	matrix	with	a	surrogate	model	

Implementation:	using	a	surrogate	model	reduces	the	cost

New	way:
Stochastic	estimation	with	the	
surrogate	model

Data	assimilation	with	a	surrogate	model

Surrogate	
model	

Polynomial	Chaos
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• Sparse and imperfect 
• Relation between 
observations and model 
outputs

Constructing	a	surrogate	model	with	polynomial	chaos	

Data	assimilation	with	a	surrogate	model

Polynomial	Chaos

Implementation:	the	surrogate	model	should	be	accurate	but	cheap	to	construct
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Surrogate	model	on	the	Garonne
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Surrogate	model	- Garonne	(1.5D)
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𝑒 = 	
1
𝑀&(ℎ)* − ℎ*)-	

.

*/0

Choosing	the	appropriate	order	of	the	polynomial

Various	P
N	=	1000

ℎ):

Direct	model
ℎ:

Inputs:	Ks1,	Ks2,	Ks3,	Q

463	points
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Surrogate	model	- Garonne	(1.5D)
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Choosing	the	appropriate	learning	sample

𝑒 = 	
1
𝑀&(ℎ)* − ℎ*)-	

.

*/0

P	=	3
Various	N

ℎ):

P	=	3
N	=	1000

ℎ:

Inputs:	Ks1,	Ks2,	Ks3,	Q

463	points
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Surrogate	model	- Garonne	(1.5D)

Sensitivity	index	for	medium	flow	(1000	simulations)

Discharge	consistent	with	boundary	conditions,	each	Ks	leads	its	own	section,	but	
transitions	between	sections	are	visible	

463	points
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Surrogate	model	- Garonne	(2D)

41	000	nodes	
(80m	to	150m)

Reducing	the	output	space	by	using	a	Proper	Orthogonal	Decomposition	(POD)

33	modes	explain	99.87	%	
of	water	level	variance

Surrogate	construction	gain	:	
1000	times	cheaper

Inputs:	Ks1,	Ks2,	Ks3,	Ksmaj,	Q
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Surrogate	model	- Garonne	(2D)

Sensitivity	index	map	for	high	flow	(1565	simulations)

Ksmaj:	U 13	 − 19
Ks1:	U 35	 − 55
Ks2:	U 28	 − 48
Ks3:	U 30	 − 50
Q:	truncated	N 6000	 − 11000

The	sensitivity	depends	on	the	
range	of	the	variations



Summary

Ø Part	I:	to	generate	inputs	for	the	SWOT-HR	simulator
• Methods	developed	for	spatializing	/	interpolating	1D	and	2D	model	

outputs	into	lat-lon rasters

Ø Part	II:	to	produce	SWOT	data
• Task	performed	by	CNES

Ø Part	III:	to	use	SWOT	data
• Geolocation	of	cloud	points	and	water	elevation	average
• Design	of	surrogate	models	for	1.5D	and	2D	models	on-going
• Assimilation	of	SWOT	data	in	an	ensemble	Kalman filter	where	the	

covariance	matrix	is	estimated	with	surrogate	models	(next	step)
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Objective: to	improve	the	estimate	of	the	discharge	in	1D	and	2D	
models	by	assimilating	SWOT	data	


