Representative Polygon Generation for Cycle-Averaged Lake Products

Yongwei Sheng, Chen Xin, Brett Wong, and Chunqiao Song

Department of Geography, University of California Los Angeles (UCLA) Email: <u>ysheng@geog.ucla.edu</u>

Background

- ☑ Multiple lake observations (completely or partially) in 21-day cycle:
 - 2-4 times at low latitudes;
 - >10 times at high latitudes.
- ☑ Cycle-averaged lake products:
 - Averaging lake attributes;
 - How about the lake shape?
 - ✤ There is no such an "average" shape.
 - Currently, maximum lake extent is being considered.
 - Pro:
 - » Easy implementation.
 - Con:
 - » Not so "averaging" or representative;
 - » Vulnerable to over-estimation of lake mapping;
 - » No plan handling half lakes.
- ☑ Objectives:
 - To produce more representative lake shape for the cycle period;
- ☑ Challenges:
 - Lake dynamics in the cycle period;
 - Half lakes;
 - Lake mapping error;
 - Imperfect image georeferencing.

Median-sized Lake Compositing (Sheng et al, 2016)

Testing Cases

- \square Fresh Water Lake (1.89 km²):
 - (71.241°N, 156.773°W)
 - Full coverage: P027, P055, P074, P102, P305, P380, and P408;
 - Partial coverage: P333 (Day12).
- \square Teshekpuk Lake (890.05 km²):
 - (70.595°N, 153.516°W)
 - Full coverage: none;
 - Partial coverage: P018, P027, P046, P305, P324, P333, P352, and P583.

Testing dataset preparation

☑ Processing procedures:

- Lake polygons from Circa-2015 lake database;
- Lake dynamics using buffers (or raising lake level using DEM);
- Observed lake polygons clipped by SWOT passes.
- Freshwater Lake: creating buffer polygons of the original lake using a 50-m buffer distance.

☑ Teshekpuk Lake: distance set to 500-m (2000-m for last one).

P018: 850 (km2) P027: 980 P046: 1078 P305: 1242 P324: 1401 P333: 1321 P352: 1162 P583: 1726 Over-mapping?

Case 1: Freshwater Lake

Seven-time full-coverage observations and one-time partial-covered observation within 21-day cycle

Results: Case1 Freshwater Lake median-size

Multi-temporal, median-size composite scheme applied: max area: 4.80 km², min area: 1.89 km², stdev. area: 0.94 km², med area: 3.25 km².

June 28, 2018

Case 2: Teshekpuk Lake

Eight-time but partial observations within one 21-day cycle (half lakes)

June 28, 2018

Half-lakes → Half-lake

Multi-temporal, half-lake composite scheme applied:

sectional combinations

June 28, 2018

Half-lakes → Full lake

Multi-temporal, half-lake composite scheme applied:

acceptable combination

Half lake cases

Two half pieces: n=2

\square Judge half lake:

- If they form any edge corner.
- If all edges intersects the other lake shore.

Full lake cases

June 28, 2018

8 Combined Full Lakes

Optimal Polygon Selection

☑ Piece margin offset;

Area deviation from median.

Median	
1 uuuuu	

OBJECTID *	pass_merg	Offset	Area_Difference_with_Median	AreaIndex	OffsetIndex	OverallIndex
1	012_052	2249.8067	34551668.877982	19.80896	31.643854	25.726407
2	073_032	4164.105	34551668.877982	16.284719	58.568734	37.426727
4	022_062	1105.933928	149505963.075772	100	15.555119	57.77756
3	073_052	7109.7746	129309458.938493	57.210347	100	78.605173

max area: 1561.56 km² min area: 1075.00 km² stdev. area: 170.72 km² med area: 1210.68 km² Selected: 1130.30 km²

P018: 850 (km²) P027: 980 P046: 1078 P352: 1162 P305: 1242 P333: 1321 P324: 1401 P583: 1726

Comparison with Maximum Compositing

Maximum composite scheme:

the observation by Path583 is selected, with the area of 1174.78 km^2

Union composite scheme:

all half-lake observations are dissolved to form a union water body area, with the area of 1587.90 km²

June 28, 2018

What if two pieces are not enough?

☑ 27 passes & 8 lake pieces.

Multiple half pieces: n>= 2

•Judge half lake:

- If they form any edge corner.
- If all edges intersects the other lake shores;

Full Lakes from 3-pieces

ST@Montreal

June 28, 2018

More challenging cases

Summary

Median-sized polygons are more presentative to the "averaging" lake shape in a cycle.
The scheme is less vulnerable to lake mapping error.

This scheme is potentially applicable to future season-averaged and annual-averaged lake product generation.

☑ More complicated cases deserve further investigation.