Non-hydrostatic impact on tides and other considerations...

Florent Lyard Damien Allain and many others...

LEGOS/observatoire Midi-Pyrénes Toulouse

Florent.lyard@legos.obs-mip.fr

What will be necessary for SWOT in addition to usual efforts

Improve global harmonic atlases

- □ More resolution (1 km along shorelines?)
- Extend tidal spectrum
- Keep improving prior hydrodynamic modelling (to compensate for data assimilation malfunctioning), including neglected terms (so far)
 - Improve bathymetry
 - Improve loading self-attraction, atmospheric forcing
 - Non-hydrostatic effects
 - Tidal sensitivity to mean dynamic topography

Develop accurate dedicated near-shore/estuarine configuration

- Non-harmonic, non-stationary -> time-stepping hind cast
- □ Local MDTs, vertical referencing (geoids, …), river discharge forcing
- New methods to characterize/predict tides in estuaries?
- □ Add phase-resolving swell/waves ?

Similar efforts needed for storm surges

- Evaluate atmospheric forcing efficiency
- □ Include tides in simulations then
 - Remove a pure tidal simulation?
 - Remove only constituents taken into account in operational tidal corrections?
- □ Deploy data assimilation ?

Data assimilation: sober versus massive

North-East Atlantic regional assimilation comparisons against tide gauges

- 1->3 subsampling of TP/J1J2 TPNJ1N E1E2En xovers;
- 4->6 idem plus along-track ;

- All altimetry data do not have the same accuracy
 - □ TP/J1J2J3 still the most accurate
 - □ E1E2En can degrade the solution
 - but remain usefull for (short wavelength) non-linear constituents
- Proper barotropic/baroclinic separation can be challenging, especially near continents (filtering issue)
- Idem for non-tidal signal at tides aliased frequencies

Hydrodynamical simulation accuracy improvement

Shelf seas

M₂ FES2014: hydrodynamic versus assimilated

K1 forced with FES99 LSA

Error ~9mm RMS (deep ocean)

K1 forced with FES2014 LSA (courtesy of JP Boy)

Error ~8mm RMS (deep ocean)

M₂ tide: impact of mean dynamic topography

M₂ tide: impact of non-hydrostatic pressure

~0,5 mm improvement, all basins

Radial deformation

Atmospheric contribution to tides, S₂

- S₂ atmospheric pressure forcing already in tidal forcing
- Not yet in loading/self-attraction terms ~10% of oceanic LSA
- o Nor in altimetry correction

S2 ocean sea level contribution (mm)

S₂ atmospheric pressure contribution (mm)

S₂ combined deformation (mm)

S2 tide: without atmospheric loading/self-attraction

S2 tide: with atmospheric loading/self-attraction 120° 30° 30° 150° 180 150° 120° 90° 601 180° å å å °0 150° 120° 90° 60° 30° 30° 60° 120° 150° ٥° 90° 180° 12 14 34

• 2 MAX • 5 MAX • 1 CM • 2 CM

K₁ tide: impact of frequency-dependent Love numbers (in astronomical potential)

Storm surge operational configuration upgrade (SALP, GRACE, etc...)

- Forcing
 - □ ERA, ECMWF OP, LWDA, etc..
 - □ Bulk, WW3 stress
- Grid configuration
 - □ Bathymetry
 - Resolution
 - MPI performances

Dynamics

- Tidal non-linearities
- Loading/self-attraction
- Validation against
 - □ tide gauges
 - □ altimetry residuals

Storm surges validation against tide gauge observations (GLOSS and coastals) residual variance (mm) after TG time series correction (2 years duration)

GLOSS global data set	0- ∞	0-20j	0.5 - 20j	60j-∞	30j-60j	10j-30j	5j-10j	0.5j-5j	0-0.5j
no correction	111.4	82.9	76.2	49.2	24.5	38.8	26.8	47.7	23.4
High resolution + ERA5	86.1	44.4	31.2	67.8	12.6	16.6	9.6	21.6	26.3
High resolution grid + LWDA	85.9	42.9	31.0	68.5	12.6	16.6	9.5	21.5	23.9
Medium resolution + ERA5	85.6	45.1	31.7	66.6	12.7	16.6	9.7	22.2	25.8
TP/Jason operational system	88.4	47.8	36.8	61.9	18.4	21.5	10.8	26.2	23.2
Medium resolution + ERA5 + tides	88.7	46.3	33.7	69.1	13.3	18.0	10.7	23.0	25.7
	0			<i></i>					
North Sea coastal data set	$0-\infty$	0-20j	0.5-20j	60 j -∞	30j-60j	10j-30j	5j-10j	0.51-51	0-0.51
no correction	240.2	206.0	188.9	60.0	45.4	81.1	57.7	143.7	56.9
High resolution + EA	123.2	106.0	80.3	52.5	14.5	27.6	23.7	65.4	55.7
High resolution + LWDA	123.6	106.7	81.2	51.4	15.0	28.5	23.9	65.9	55.9
Medium resolution + ERA5	119.5	102.3	75.2	51.4	14.7	26.7	22.6	60.3	56.3
TP/Jason operational system	148.7	104.6	78.6	71.5	33.4	39.2	23.6	60.3	55.6
Medium resolution + ERA5 + tides	102.9	85.6	62.0	48.2	13.1	23.4	18.9	49.1	47.9

standard deviation of LSA HR+EI_AN 2014/01 (mm)

3 levels of corrections to consider:

Global Shelf/coastal Near-shore/estuaries

Try to get only 2

summary

SWOT mission barotropic tidal corrections task will be highly demanding

- Efforts on barotropic modelling/data assimilation to be continued
 - □ needs to put more focus on regional improvements
 - □ usually neglected sources of error are being revisited
 - □ Bathymetry still THE serial killer
 - Assimilation data processing/editing still to be improved (including barotropic/baroclinic separation, consistent loading in data treatment AND model)
 - estuaries/near shore configuration to be implemented in some dedicated sites, with data assimilation, strong collaboration between groups required
 - no certainties yet on the level of accuracy that will be possible in shallow water/high latitude

Present plans

- □ New FES atlas to be started
- □ 1 or 2 km resolution at shorelines, 5km on shelves, 15 km elsewhere
- □ Suitable for providing boundary conditions to near-shore/estuarine models
- □ Renewed stom surges operational correction

Non-hydrostatic, 3D frequency-domain solver (T-UGOm)

> NH propagational effect proportional to squared frequency

> to investigate energy transfer from internal tides to internal waves (higher frequencies, solitons?) through non-linear processes

Status of Tide Modeling for SWOT

Florent Lyard

Richard Ray NASA Goddard Space Flight Center

Special thanks to: Loren Carrère and Ed Zaron

SWOT Science Team Meeting, Montreal

June 2018

Barotropic tides : state of the art/some insights for the SWOT mission

Florent Lyard Damien Allain and many others...

LEGOS/observatoire Midi-Pyrénes Toulouse

Florent.lyard@legos.obs-mip.fr

Barotropic tides (and storm surges)

Present state (nadir altimetry purposes)

- Deep ocean (primary objective): harmonic atlases, well-defined spectrum
- Coastal seas (experimental) :harmonic atlases, limited spectrum (omission errors)

Harmonic atlases

- □ Hydrodynamic + data assimilation
 - Hydrodynamic (prior) solution accuracy critical
 - Data assimilation:
 - □ Sober (use the minimal dataset)
 - Massive
- □ Empirical:
 - Based on pre-existing atlases (adjustment)
 - More or less massive data use

Storm surges

- □ Hindcast (time integrated) simulations
- □ Accuracy dependent upon:
 - Bathymetry, resolution,.. (as much as the tides)
 - Atmospheric model accuracy, resolution (space and time), wind stress paramerisation
- No data assimilation so far

Barotropic models RMS

- TP/Jason coverage, deep ocean
 - Models are converged
 - Except in ocean circulation
 - o and IT generation regions?
- Shelf/coastal seas
- \circ Polar seas

Tidal anomalies in estuaries

- > deficient harmonic method to analyze/predict tides
- > low tides not modified in spring/neap cycle
- > tide modulation by river discharge fluctuations (increase of tidal residual)

Tidal modelling accuracy in estuaries

- > rapid change of level at ebb/flood transition
- > needs data assimilation (tide gauges)
- > with 1 mn time sampling (local resonance oscillation not captured at 5 mn sampling)

60N

58N

56N

52N

