

Mapping surface tides from SWOT data: An assessment of regularized and constrained harmonic analysis in the St. Lawrence Estuary

<u>Pascal Matte</u>¹, Natacha Bernier¹, Vincent Fortin¹, Jean-Michel Fiset², Yves Secretan³

- Meteorological Research Division, Environment and Climate Change Canada
 National Hydrological Services, Environment and Climate Change Canada
- ³ Centre Eau Terre Environnement, Institut National de la Recherche Scientifique

SWOT 3rd ST Meeting Montreal, Canada June 26-29, 2018

Objectives

- Evaluate the potential of SWOT data to map surface tides in estuaries
- Develop a robust method for the recovery of tidal constituent properties
 - Be robust to SWOT temporal resolution (limited tidal aliasing)
 - Include multiple tidal constituents in each tidal band (good frequency resolution)
 - Allow 2D mapping of nonlinear tides (spatially coherent)
 - Be independent of system geometry (easily transferable)

Study Site

St. Lawrence Estuarine Transition Zone (ETZ)

Study Site

St. Lawrence Estuarine Transition Zone (ETZ)

Methods

- Classical Harmonic Analysis (HA)
 - Harmonic model:

$$y_c = c_0 + \sum_k C_k \cos(\sigma_k t - \Phi_k)$$
 or
$$y_c = c_0 + \sum_k \left[c_{1,k} \cos(\sigma_k t) + c_{2,k} \sin(\sigma_k t) \right]$$

In matrix form: $y = Xc + \varepsilon$

 y_c : tidal heights c_i : model coefficients σ_k : tidal frequency t: time $C_k = \sqrt{c_{1,k}^2 + c_{2,k}^2}$: amplitude $\Phi_k = \tan^{-1}(c_{2,k}/c_{1,k})$: phase

- Hypotheses:
 - Tides are stationary and independent of time-varying riverine, oceanic and atmospheric influences.
 - There is a fixed number of tidal constituents with discrete periodicities, phase angles and amplitudes.
 - Tidal constituents are mutually independent.

Methods

Ordinary Least-Squares (OLS)

$$\hat{c} = \arg\min_{c} \left\{ \sum_{i=1}^{n} (y_i - x_i^T c)^2 \right\} \text{ or } \hat{c} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- Regularized Least-Squares
 - Ridge regression (Hoerl and Kennard, 1970)

$$\hat{c} = \arg\min_{c} \left\{ \sum_{i=1}^{n} (y_i - x_i^T c)^2 + \lambda \sum_{j=1}^{p} c_j^2 \right\} \text{ or } \hat{c} = \left(\mathbf{X}^T \mathbf{X} \right)^2$$

Lasso regression (Tibshirani, 1996)

$$\hat{c} = \arg\min_{c_0, c} \left\{ \frac{1}{2n} \sum_{i=1}^n (y_i - c_0 - x_i^T c)^2 + \lambda \sum_{j=1}^p |c_j| \right\}$$

Elastic Net regression (Zou and Hastie, 2005)

$$\hat{c} = \arg\min_{c_0, c} \left\{ \frac{1}{2n} \sum_{i=1}^n (y_i - c_0 - x_i^T c)^2 + \lambda \sum_{j=1}^p \left(\frac{1 - \alpha}{2} c_j^2 + \alpha |c_j| \right) \right\}$$

Find optimal λ using *L-curve criterion*

Methods

$$y_a = a_0 + \sum_k A_k \cos(\sigma_k t - \alpha_k)$$

$$y_b = b_0 + \sum_k B_k \cos(\sigma_k t - \beta_k)$$

$$y_c = c_0 + \sum_k C_k \cos(\sigma_k t - \Phi_k)$$
ETZ

- Constrained Harmonic Analysis (ConHA)
 - Model parameters at location c are estimated from known tidal constituent properties at two *in-situ* boundary stations a and b.
 - Constrained minimization:

$$\hat{c} = \arg\min_{c} \left\{ \sum_{i=1}^{n} (y_i - x_i^T c)^2 \right\}$$

$$\begin{aligned} & \min(a_0,b_0) < c_0 < \max(a_0,b_0) \\ & \sup(1-f) \times \min(A_k,B_k) < C_k < (1+f) \times \max(A_k,B_k), \\ & \alpha_k < \Phi_k < \beta_k \end{aligned}$$

where f is an amplification factor.

Page 7 – July 17, 2018

Sensitivity Analysis

60

10

10⁰

• Sensitivity to frequency of acquisition (1-year signal at station c)

Sensitivity Analysis

Sensitivity to SWOT record length and initial launch time

Changement climatique Canada

Page 9 – July 17, 2018

 2D water level fields from a <u>1-year</u> numerical simulation were used to produce a 2D SWOT sample

des

RMSE

OLS

• M₄ amplitude

Summary and Highlights

- Regularized least-squares
 - More robust than OLS, but sensitive to number of constituents
 - Longer record (~3 years) needed to improve tidal prediction
 - Good alternative if no in-situ data
- Constrained harmonic analysis (new approach)
 - Requires prior knowledge on tides at boundary stations
 - Robust to downsampling and reduced record length
 - Limited tidal aliasing
 - Resolves for multiple constituents in each tidal band
 - No prior spatial function needed (easily transposable)
 - Accuracy <8% during cal/val
 - Stable accuracy (<7%) achieved after 1 year of science mission

Page 14 – July 17, 2018

Perspective and Applications

Future work

- Full error analysis including SWOT errors
- Non-stationary tides (e.g. influenced by river flow, storm surges)
 - NS_TIDE (Matte et al. 2013, JTECH)

Extended uses

- Coastal areas where tides are spatially coherent
- Remote areas with limited field efforts
- Model assimilation
- Discharge estimation

Discharge Estimation

- Estimating river discharge from tides
 - Jay and Kukulka (2003), Moftakhari et al. (2013, 2016)

$$Q_R = \alpha + \beta \times TP^{\gamma}$$

- Cai et al. (2014): analytical approach
- Tidal discharge estimation
 - Solving the continuity equation (Matte et al. 2018, JGR)

$$Q_{tot} = \sum_{r} Q_{r} - \int_{\Omega} \frac{\partial h}{\partial t} d\Omega$$

A new multi-gauge rating curve approach

$$Q = a + (bh_1 + ch_2)^d + (eh_2 + fh_3)^g$$

