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High-resolution processor flow chart
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rivers are not processed by
the lake processor (LOCNES)
[except reservoirs]
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Small example with
synthetic case from reality
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Small example with
synthetic case from reality

Nodes file obtained in output of
RiverObs
— The centerline delineates the river




Small example with
synthetic case from reality

Improved geolocated pixels obtained
in output of RiverObs

— Some lake pixels have been
processed by RiverObs




Small example with
synthetic case from reality
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Improved geolocated pixels obtained
in output of LOCNES

— Some lakes have been partially
Processed by both river and lake
processors




The “lakes-close-to-rivers”

problem
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River and lake a priori databases shown: courtesy E. Altenau
(UNC) and Y. Sheng (UCLA)

Baseline: set “max width”
to 2x GRWL to allow for
prior centerline error. “max
distance” is thus equal
GRW.L width.

At nearest point, Raccoon
is 65 m wide, berm is 40 m




The “lakes-close-to-rivers”
problem

Worst case, river algorithm
pulls in entire lake into the
: node, since it would be
dominant segment at
reach level. Node has
crazy high area + width,
and lake is not observed.

Raccoon

River. lowa Less bad, if lake is not

dominant segment, river
node will steal pixels
within “max width” from
. Industrial Ponds = the lake.

] Gray’s Lake

=) , , | | l | | Occurs fairly infrequently:
-93.7 9368 9366 03564 9362 -93.6 9358 Seems Worse for riverS <
100 m.

River and lake a priori databases shown: courtesy E. Altenau
(UNC) and Y. Sheng (UCLA)



The “lakes-close-to-rivers”
problem

The pink area
(slightly exaggerated)
shows pixels that
would get pulled from
the lake and

~assigned to the river.

Note these are not
based on calculations
and so shapes are
approximate



How prevalent is the lakes-
close-to-rivers problem??

* Alex Fore (JPL)
analyzed this for
European lake and
river databases
(~16,000 river
nominal 10 km
reaches; ~460,000
lakes)

* Note that ~59% of
river reaches < 100
m:; 64.6% of lakes <
(250 m)?

CDF of reach wdith; 100m: 0.589
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How prevalent is the lakes-
close-to-rivers problem??

« ~5% of reaches have a
lake closer than 72 reach
width. Problem worse
(~7%) for rivers greater
than 100m

* ~1% of lakes have a reach
closer than 72 reach width.
Problem worse (~6%) for
lakes >1 km2

« This will get slightly worse,
as it is likely that we will
want to map pixels within 1
width ilns_tead of %2 width)
to centerline

. Dl%gln in to better
understand where these
happen
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Consequences of pixel miss-
assignment

 For rivers:

* Impact on height and area values (and other
attributes derived from them)

* Impact on improved geolocation since its key
principle uses the height

 For lakes:

* Impact on lake boundaries (and other attributes
derived from this)



|s there a solution to the lakes-
close-to-rivers problem??

« JPL (Alex along with Brent Williams and others)
are currently assessing whether or not a better
pixel assignment algorithm might be feasible in
RiverObs

* |t would take both the lake and river prior databases into
account when assigning pixels

* |t is expected that this added complexity would yield
higher accuracy, but at higher computational expense,
and greater risk of failure in some cases

 To be developed in LOCNES:

 Ability to process entities partially processed by
RiverObs

 Try to identify entities entirely processed by RiverObs
but that should not (some ideas but more difficult to
implement...)
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FiG. 1. Colorado River topography and subbasin flows. Flows in
the tablke, except for Gila, are naturalzed flow averages from
USBR (2010) from 1975 to 2005 and correspond to the dots in the
figure. USBR did not report flows for the Gila, so we report a
predevelopment estimate from Blinn and Poff (2005)

One additional case where
rivers and lake overlap will
likely pose challenges to
algorithms: lakes that fall
along river networks, such as
reservoirs like Lake Mead
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