
SWOT

FPDEM: Algorithm status and plans

Damien Desroches, Emmanuelle Sarrazin

SWOT ST Meeting, Bordeaux
17-20 June 2019

SWOT ST Meeting, Bordeaux, 17-20 June

Introduction

Principle
 Water edge pixel heights (“well done”) are used to get the heights of the

banks.

 For each date, the water edge pixels of a water body form an iso-
elevation curve.

 With enough observations, the floodplain DEM is well sampled between
the observed minimum and maximum water height and extent.

Produced after a sufficient accumulation of SWOT data (at least one
year)

Format not defined yet:

 Raster, 3D DEM ?

 Possibility to include intermediate products as polygons

2

Cross section view

Plane view

SWOT ST Meeting, Bordeaux, 17-20 June

Algorithm

Data needed to test and validate
 Synthetic cases:

 Create synthetic DEM

 Real cases:

 Required simulations with various water heights

Input data
 Pixel cloud

 Requested fields: ['classification', 'pixel_area', 'longitude', 'latitude', 'height', 'range_index', 'azimuth_index']

 PixcVec

 Requested fields: ['range_index‘, 'azimuth_index‘, 'longitude_vectorproc', 'latitude_vectorproc', ’height_vectorproc']

 TBD : Introduce error and flag fields from pixel cloud product to select only “good pixels”

3

SWOT ST Meeting, Bordeaux, 17-20 June

Algorithm (detailed version in back-up slides)

Step 1: Boundary extraction for each date
 Identify the polygon in utm coordinates that best captures a region with the alpha shape approach

 Provide a polygon for both lake and river (could be deliver as a product when
floodplain DEM will be produced)

Step 2
 Aggregate results on all dates to get a global point cloud

 Two possible products:

 Raster product => Raster creation

 Mesh product => Surface reconstruction

4

Vintage representation of flood-plain DEM
(synthetic DEM as input)

SWOT ST Meeting, Bordeaux, 17-20 June

Algorithms

Step 2: Raster creation
 Produce a raster of floodplain DEM height

 The floodplain DEM height is obtained by averaging the edge pixel
heights from the different acquisitions that fall within the cell.

 To avoid holes in the DEM raster, the cell height is interpolated from
pixels in the neighbor cells. The height of a cell is computed by
weighting the pixel heights within a neighborhood based on their
distance to the center of the interpolated cell.

 Implemented by using plyflatten (https://github.com/MISS3D/s2p.git)

5

Height interpolation
in the DEM grid

SWOT ST Meeting, Bordeaux, 17-20 June

Algorithms

Step 2: Surface reconstruction

Work in progress (not implemented yet)

 Requirements:
 Filter point cloud

• Remove outlier
• Denoising point cloud
• Remove redundant points

 Compute normal vectors

 Possible method for surface reconstruction: Poisson method

6

SWOT ST Meeting, Bordeaux, 17-20 June

Results

Simple lake with smooth banks

With SWOT Hydrology toolbox

 21 dates

7

Ground truth

SWOT ST Meeting, Bordeaux, 17-20 June

Results

Simple lake with smooth banks

 Results

8

Raster product 3D point cloud visualization (Potree)

SWOT ST Meeting, Bordeaux, 17-20 June

Results

Simple lake with steep banks

With SWOT Hydrology toolbox

9

Height errors appear for steep banks with
a raster product

Ground truth

SWOT ST Meeting, Bordeaux, 17-20 June

Results

Po river

 SWOT HR simulator

 36 dates (various heights)

10

SWOT ST Meeting, Bordeaux, 17-20 June

Results

Po river

 SWOT HR simulator

 36 dates

11

Raster product 3D point cloud visualization (Potree)

SWOT ST Meeting, Bordeaux, 17-20 June

Results

Sacramento

 SWOT HR simulator

 14 dates

 Not enough height variation

=> Difficult to produce the
floodplain DEM

12

SWOT ST Meeting, Bordeaux, 17-20 June

Results

Sacramento

 SWOT HR simulator

 14 dates

=> About 30 m of shift variation
for the boundary polygons

16

SWOT ST Meeting, Bordeaux, 17-20 June

Summary

Conclusions
 Need to have various heights to correctly extract floodplain DEM raster

 Can be very sensitive to heights/areas errors (water detection, phase unwrapping, etc.)

 Need to produce a quality flag (or uncertainties…) to identify where floodplain DEM makes sense

 Use boundary extraction for each date, each water body

 Polygon product available for river in floodplain DEM product

 Prototype can handle large pixel clouds (date by date)

 Raster products are unable to catch some details (for example steep banks) => Mesh products ?

14

SWOT ST Meeting, Bordeaux, 17-20 June

Summary

Perspectives
 Some possible improvements

 Use of pixel flagging and complementary approaches to filter errors

 Improve reconstruction of steep banks

 Introduce adaptive grid into raster product (quadtree)

 Implement surface reconstruction algorithm

 Incorporate computed floodplain DEM in a global DEM like SRTM ?

 Produce stress tests using “large flooding” dataset using synthetic DEM generator

 Prototype code will be distributed as part of the SWOT Hydrology Toolbox (Open Source)

 https://github.com/CNES/swot-hydrology-toolbox

15

SWOT ST Meeting, Bordeaux, 17-20 June

16

Questions

(Forbidden question : How do you compute
uncertainty and quality flag for floodplain

DEM ?)

SWOT ST Meeting, Bordeaux, 17-20 June

BACKUP

17

SWOT ST Meeting, Bordeaux, 17-20 June

Algorithm

Step 1: Boundary extraction for each date
 Filter water pixels : 3 (Water near land), 4 (Water), 23 (Dark water near land) et 24 (Dark water)

 Convert to a water binary mask in SAR geometry

 Use connected-component labeling algorithm to detect connected regions and label them.

 Compute region areas and remove small regions (area threshold value to defined)

 Convert to utm coordinates

 Remove isolated points

 Use cKDTree to compute the distance between points.

 For each points compute the number of neighbors at a distance less than distance_min

 Keep only points that have enough neighbors

 Identify the polygon in utm coordinates that best captures a region with the alpha shape approach

 Concave polygon
18

SWOT ST Meeting, Bordeaux, 17-20 June

Algorithm

Focus on alpha shape algorithm
 https://doc.cgal.org/latest/Alpha_shapes_2/index.html#Chapter_2D_Alpha_Shapes

 Imagine a huge mass of ice-cream making up the space R3 and containing the points as "hard"
chocolate pieces. Using one of these sphere-formed ice-cream spoons, we carve out all parts of
the ice-cream block we can reach without bumping into chocolate pieces, thereby even carving
out holes in the inside (e.g. parts not reachable by simply moving the spoon from the outside).
We will eventually end up with a (not necessarily convex) object bounded by caps, arcs and
points. If we now straighten all "round" faces to triangles and line segments, we have an intuitive
description of what is called the α-shape of S.

 Alpha shapes depend on a parameter α. In the ice-cream analogy above, α is the squared radius
of the carving spoon. A very small value will allow us to eat up all of the ice-cream except the
chocolate points themselves. On the other hand, a huge value of α will prevent us even from
moving the spoon between two points since it is too large. So we will never spoon up the ice-
cream lying in the inside of the convex hull of S. Hence, the alpha shape becomes the convex
hull of S as α→∞.

 Today two implementations

 Full python implementation based on scipy.spatial.Delaunay for triangulation and
shapely.ops.cascaded_union to aggregate polygons: Slow

 CGAL: Very fast but GPL license

19

SWOT ST Meeting, Bordeaux, 17-20 June

Algorithm

Focus on alpha shape algorithm
 Today two implementations

 Full python implementation: Slow

 CGAL: Very fast but GPL license

 Importance of alpha value

20

 = 600 = 750 = 2500

Pixel cloud

SWOT ST Meeting, Bordeaux, 17-20 June

Algorithm

Focus on alpha shape algorithm
 Good performances of CGAL implementation

 Can be used on very large cases

21

Polygon extraction for
Mamawi case

