

cnes

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Surface Water and Ocean Topography (SWOT) Mission

SWOT Science Team Meeting

June 17, 2019

Bordeaux, France

Ocean Cal/Val Plan and Global Statistical Cal/Val

Nicolas Picot, Curtis Chen

Cal/Val Objectives

- Basic objectives of Cal/Val¹:
 - Calibration: Estimate calibration parameters for ground processing based on flight data
 - Error budget validation: Validate measurement performance ("Does system behave as expected, and if not, what can/should we do?")
 - Data product validation: Validate measurement with respect to highlevel requirements ("*Does performance meet mission success criteria?*")
- Different sources of data may be useful for different Cal/Val objectives
 - Direct measurements of quantities related to SWOT measurement physics may best demonstrate that measurement performance is as expected—or enable diagnosis of problems if measurement performance is not as expected
 - Direct measurements of quantities of oceanographic science interest may best establish link between SWOT measurements and science objectives underlying SWOT requirements

Status as of 2018 Montreal Cal/Val Meeting

- Airborne lidar and hydrographic and geodetic in situ concepts were being pursued but needed to be matured and fully validated via pre-launch ocean experiments
 - Airborne lidar instrument was looking for faster, longer-range aircraft
- in situ experiment design was being developed, including moorings, gliders, and wirewalker
- GPS buoys were being considered in the context of other in situ measurements
- Global statistical approaches could likely validate wavelengths as short as 50-70 km, though validation to 150 km by local (in situ or airborne) approaches would still be preferred
- California Cal/Val site would be primary US project site
- Development of Mediterranean activities was continuing
- Follow-on validation and science activities were being coordinated external to SWOT project organization

- Discuss big picture of how different Cal/Val approaches fit together in order to guide and prioritize future efforts:
 - Provide status on major ocean Cal/Val activities:
 - Global statistical approaches (very brief summary)
 - US in situ activities (hydrographic and GPS)
 - US lidar activities
 - Bass Strait in-situ activities
 - French/European in situ activities & French lidar activities
 - Discuss additional approaches and sources of data ("adopt a crossover")
- Discuss technical feasibility and risks associated with individual approaches and identify risk mitigations
 - Ability of proposed approaches to collect data of sufficient accuracy
 - Ability to interpret and inter-compare SWOT and other data sets
 - Robustness of approaches to launch date changes, logistical challenges, etc.
- Coordinate planning of additional activities that might benefit SWOT

Timeline of US Cal/Val Plans

- Mid 2017: Monterey Bay experiment (in situ hydrographic, GPS collection)
- Mid 2018: Peer review of plans for pre-launch in situ campaign
- Early 2019: Execute pre-launch in situ campaign at California Cal/Val site
 - Deferred; plans to be discussed in meeting
- Mid 2019: Execute pre-launch lidar campaign on Gulfstream V aircraft
 - (Data analysis will continue beyond Bordeaux meeting)
- Late 2019: Refine post-launch Cal/Val plans based on experience from pre-launch campaigns
- Early 2022 (L+3 months to L+6 months): Post launch Cal/Val at California crossover site

Timeline of French/European Cal/Val Plans

- May 2018 Pre-SWOT Western Mediterranean cruise (F. d'Ovidio & al)
- Fall 2018 Lidar ocean flights along altimeter groundtracks (L. Froideval) campaign was postponed due to weather conditions. Still not completed over open ocean - some flights were performed over Gironde Estuary.
- Fall 2018 SKIM campaign performed, providing interesting inputs related to current and SWH variability.

Ongoing activities :

- Pre-launch preparation of global statistical CalVal activities
- Assessment of SWH, Tropo, MSS, ... variability within the swath globally.
- Satellite product support for international « Adopt-a-crossover sites »

Future plans :

- Potential synergy with other satellite campaigns or Calval projects : e.g. CFOSAT in 2020 (bay of Biscay), potential future SKIM campaigns.
- 1day Xovers : assess SSH variability, SWH & Sigma0 mean values and variability, MSS/Tides/DAC quality, internal tides amplitudes; ... continue the analysis with more recent inputs or models
- Continue working on LRM and SAR processing methods improvement to contribute to SWOT validation
- Early 2022 (L+3 months to L+6 months): Post launch Cal/Val at chosen crossover sites (Mediterranean Sea, SW Pacific, ...)

Preparation of global statistical CalVal activities

Refer to G. Dibarboure presentation during Montreal meeting : <u>https://spark.adobe.com/page/31dB2ZaWuvSnZ/</u> : identify SWOT / JCS or S3A/B Xover with a short time gap

Case 1: good alignment of solar times

- Where a XOVER can exist, the time difference is always less than 1h
- Valid segments at all latitudes + some extremely long segments

Preparation of global statistical CalVal activities

 Refer to G. Dibarboure presentation during Montreal meeting : <u>https://spark.adobe.com/page/31dB2ZaWuvSnZ/</u>

Length of XOVERs: when should be the sampling phase ?

Sentinel-3 provides many 1h XOVERs during <u>any</u> 90-day period Better if we align solar times (λ extended from 150 to 1000 km)

Ongoing development: R&D DUACS 2019 (better SARM)

SWO

© cnes

11

Backup