SWOT Raster: Update

Tamlin Pavelsky Shuai Zhang UNC Department of Geological Sciences

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Current Status of the SWOT Raster Product

- Raster will be produced systematically at 100 m and 250 m resolutions over all regions where the pixel cloud is produced and there is water.
- We will use a fixed grid with fixed boundaries, divided into tiles of ~120 x 120 km, for raster storage and distribution.
- Raster will be produced in netCDF format, with on-demand processing to geoTIFF, JPEG2000, etc. to be discussed with data distribution centers.
- Raster will be provided in UTM coordinates, but we will aim to have on-demand processing from pixel cloud direct to lat/lon.
- Prototype software for producing the raster product has been developed at UNC (in python) and has been evaluated and added to by JPL (B. Williams).

Identifying Information

- Cycle Number
- Tile ID
- Time
- Projection Information

Data Fields

- Height (m)
- Height Uncertainty (m)
- Inundated Area (m² or %)
- Inund. Area Uncert. (m²)
- Cross-track Distance (m)
- Average Sigma0 (dB)
- Sigma0 Uncertainty (dB)

Implemented (New)

Not implemented, simple Not implemented, requires work

Current Raster Data Fields

<u>Flags</u>

- Data quality flag
- Low SNR
- Ice Cover
- Layover
- Geoid: geoid height above reference ellipsoid
- Geoid Slope
- Solid Earth tide model
- Pole tide model
- Orbit quality flag
- Instrument flags
- Wet tropospheric correction
- Dry tropospheric correction
- Ionospheric correction

Sacramento Example Water Surface Elevation

cycle_0001_pass_0249_001L_nlcd-5dB_water10dB

Cloud points

10

-20

leight (m)

-50

	Mean elev (m)	Std elev (m)
Point	-2.88	2.83
100-m raster	-2.41	6.69
250-m raster	-1.95	8.03

Sacramento Example Water Surface Elevation Uncertainty

Note: uncertainty does not contain all systematic errors

Sacramento Example Water Surface Elevation Uncertainty (Threshold)

Note: uncertainty does not contain all systematic errors

Sacramento Example Inundation Extent (% of Pixel Area)

cycle 0001 pass 0249 001L nlcd-5dB water10dB

Sacramento Example Inundation Extent Uncertainty

Current Status Summary

- We can successfully compute WSE, WSE uncertainty, Inundated Area Fraction, and Inundated Area Uncertainty in a raster context
- Water Surface Elevations in the raster should not be interpreted in isolation from inundated area fraction.
- Inundation extent does not have the same issues as water surface elevation.
- Goals going forward:
 - Incorporate additional variables
 - Test on further cases
 - Share code & documentation with ST, JPL, CNES colleagues for feedback and additions