
AVISO data access and ramp up experiments

G.Dibarboure, N.Picot (CNES)
F.Briol (CLS), L.Gaultier (ODL)

SWOT Science Team Meeting
June 2019

1



Introduction

 Science and applications share a common challenge: the learning curve of SWOT

 Basic challenges

 Data access & download
 Data volume & processing time 
 SWOT is better when combined with other data

 Practical examples

 How can I get KaRIN data that are 
consistent/calibrated with Jason-CS or S3?

 Can I get match-ups with <other mission>
without downloading everything?

 How do I run <big computation> on 2+ years
of SWOT with my modest laptop/server?

 Objective of this talk: show how we are using ocean simulation tool as training wheels
2



3

CNES Research & Appl HPC

External data 
providers 

SWOT Ground 
segment

End-user 
(research or 
application)

• Explore catalogue
• Request support 

and help
• Documentation

• Request data
• Download data
• Access with DOI
• Basic services 

(DAP, Live Acess
Server…)

Web framework

Web

External
missions &
products

Ground segments

data &
meta-data

data &
meta-data

Catalogue
meta-datameta-data

login

The old paradigm

Altimetry & 
oceanography

database
Other CNES 
missions &
products

data &
meta-data

AVISO / ODATIS

data
data AVISO data 

repository



4

CNES Research & Appl HPC

External data 
provider 

SWOT Ground 
segment

End-user 
(research or 
application)

• Explore catalogue
• Request support 

and help
• Documentation

• Request data
• Download data
• Access data with

DOI

Distribution framework

Web

External
missions &
products

Producteurs

data &
meta-data

data &
meta-data

Catalogue
meta-datameta-data

login

The challenge with SWOT

Altimetry & 
Oceanography

products

Other CNES 
missions &
products

data &
meta-data

AVISO / ODATIS

AVISO data 
repository

data

data

SWOT
(hundreds
of TB)

SWOT



The new paradigm

 Bring the algorithm to the data, not the opposite

 New technology is the main challenge for the end-user

 Storage format might seem trivial but it is a critical item
 Running multi-core computation is also essential and not always simple
 Exploring data remotely (e.g. simple visualization) requires specific sets of skills and tools

 Some technologies analyzed by CNES

 PANGEO software stack: promoted by oceanography community (e.g. SWOT science team)
 DATACUBE used by some so-called DIAS datacenters (ESA Copernicus framework)

5



6

CNES Research & Appl HPC

External data 
provider 

SWOT Ground 
segment

End-user 
(research or 
application)

• Explore catalogue
• Request support 

and help
• Documentation

• Request data
• Download data
• Access data with

DOI

Distribution framework

Web

External
missions &
products

Producteurs

data &
meta-data

data &
meta-data

Catalogue
meta-datameta-data

login

The new paradigm

Other CNES 
missions &
products

data &
meta-data

AVISO / ODATIS

AVISO data 
repository data

data

Development Cloud (CNES HPC)

External Cloud (e.g. WeKEO DIAS, EOSC…)

Algorithm transfer

Démo data &
meta-data

• Advanced request & 
download

• Remote computing
capabilitys

SSH + Jupyter, 
DAP, WMS, WCS…

DEMO USE CASES 
& BETA USERS

AVISO



SWOT proof of concept

 Use-cases

 Run temporal algorithms on HR ocean model stored as snapshots (e.g. MITgcm, eNATL60, Mercator)
 Speed up SWOT’s « ocean science simulator » to generate 1 year of simulated data instantaneously
 Speed up a multi-temporal algorithm (e.g. cross-over match-ups) over this large dataset
 Compute multi-sensor match-ups rapidly (e.g. SWOTsim with Sentinel-3 topo and ocean color)
 Visualize this large dataset efficiently

 The experiment’s goal is to serve as training wheels

 Test technologies (realistic benchmarks) that are 
mandatory to speedup algorithms and data access

 Identifies technical roadblocks and practical difficulties
 Investigate if one single framework can be used 

for data distribution and remote computing
 Ensure the solution is accessible: the science team and 

applications must be trained by the end of the Cal/Val phase 
7



Example #1: making parallel computing accessible



Un exemple de notebook

Not too shabby but…

…how do I (end-user) 
use that ?!? Most importantly, a very efficient 

IT team and user helpdesk



Ongoing experiment: PANGEO framework

 Python framework well suited for geoscience science (incl. oceanography)

http://pangeo.io/quickstart.html

 Suites of libraries for HPC
(also work on your personal 
laptop/server for development)

 Good for scientists: SWOT science team members involved in PANGEO community

 Active involvement of CNES IT team members (read: in-house expert support)

 Practical goal: test data storage format & massive parallel computing in SWOT context

10



Example: your algorithm should not be throttled by I/O

 Before : process killed after one day

 After : 

 Time average in of U/V in 8 min
 Tides (all constituents) estimated and 

removed from MITgcm in a less than 5 hours 

 Essential assets

 Fast I/O (ZARR)
 Parallelization (DASK)
 Geoscience interfaces (XARRAY)

 Most importantly, the code 
is accessible to regular 
end-users (not just 
developers)

11

Mean current

M2 
phase

Detided
SSH



Use-case: remove tides signal from HF ocean model snapshots

12

Zarr

Read time series
Harmonic analysis
Write output

Open web brower…
… use my detiding
algorithm on MITgcm
H/U/V snapshots

Split that computation 
on N computing nodesParallel read of data chunks 

efficiently (stored as 2D 
lon/lat snapshots, but 1D 
time series needed) Run algorithm on 

chunks
min / hours
not days

Compile outputs
from data chunks

Key numbers
• 30 TB worth of test data 
• 1.5 km resolution, global ocean (MITgcm)
• 24 workers 
• 3 TB of RAM (all workers)
• 1 single notebook for laptop and HPC with PBS

Notebook execution time
• 4 s to interpolate snapshots on regular grids
• 8 min to perform time average (18 months, hourly)
• 5 hours for a complex algorithm (detiding)



Example: interpolating irregular datasets

 Interpolation is trivial when the input dataset is gridded

 It becomes increasingly difficult for irregular grids / pixel clouds… especially when they are dense

 Can we easily interpolate irregular 1.5 km grids? 

 Before (basic scipy algorithm) : hours to build and apply the KdTree offline computation

 After: 5 s to re-interpolate a model snapshot on any grid  can be done interactively and on-the-fly

 How : add python API to library developed by CNES/CLS for the SWOT ground segment (GECO)

 Make it simple ! (2 lines to setup the input grid search tree, 1 line to activate the interpolator)

 This « trivial » capability can help end-users do very frequent tasks (e.g. multisensor match-ups)

13



Example #2: visualization with SEASCOPE



What is SEASCOPE

 Data visualization and data exploration software (win, max, linux)

 Developed par Ocean Data Lab (open source, first version already available)

 Beta version already used successfully in ESA training sessions and summer schools

 First release candidate next Fall

 Why SEASCOPE ?
 Developed by, with, and for the community (not a generic software development)
 Flexible and reactive (reads native format) with intuitive GoogleEarth feel (attractive and glossy look) 
 Very modular : readers for external data access, in-situ…
 Can be controlled manually or through python bindings (display tool for Jupyter/PANGEO notebooks)

 Some links
 Main page and documentation: https://seascope.oceandatalab.com/
 Jupyter notebook example (camera control) : https://seascope.oceandatalab.com/tutorials/camera.ipynb
 Video example to explore ocean remote sensing data : https://www.youtube.com/watch?v=zSrfWoxG_FQ

15



3D interactive









Outlook and conclusions



Outlook

 Done: basic framework selected and tools assembled

 Now: end-to-end simulation benchmark for SWOT (MITgcm SWOT sim  XOVER)

 ETA is this summer

 Next steps

 Demonstrate capability to run multi-sensor match-ups (Sentinel-3 / Jason-CS) on-the-fly
 Run additional experiments with first « advanced » users (science team & Project cal/val team)
 Test capability to distribute dataset (OpenDAP, WMS, WCS…) from same repository & HPC



Development phases
 Step 1

 Open CNES datacenter to a few beta users (from science team or applications)
 Buildup datalake with science and application data of interest (e.g. Copernicus Sentinels)
 Test technologies (e.g. external data download, scientific libraries, visualisation…)
 Start to empower a small set of advanced users 
 Main goals captured in SWOT proof of concept (see next slides)

 Step 2 

 Ramp up phase with more users and usages 
 Quantify how much support (training, development) and resources (CPU/disk/tools) are needed
 If needed, identify partner infrastructure (e.g. WeKEO, EOSC) to host SWOT usages and setup M.O.U
 Consolidate critical elements to encompass a wide range of usages

 Step 3

 Training of SWOT users
 Support development of algorithms and research with CNES infrastructure and expert developer helpdesk
 Common infrastructure for data distribution, advanced services and Cloud computing
 Transfer larger computational requests (e.g. match-ups with huge Copernicus datasets) to a larger and more 

operational infrastructure

22



Conclusions

 Many lessons learned from ongoing experiment with simulated data

 Trust the framework, empower users, focus on key assets
 Avoid big software developments (usually not needed and restrictive for researchers & innovation)

 It is possible to provide very powerful HPC/HPDA capabilities in a research-friendly framework

 Reduce download / bandwidth to the minimum
 Only one copy of the largest datasets
 Optimization: huge reduction of computing time (clumsy offline queues  convenient interactive research)
 Same research tools can be developed locally (laptop/server+data samples) and deployed on HPC/cloud
 Users are not limited by software (they’re still free to do their research & application the way they want)

 This requires 

 a lot of preparation (to identify and remove roadblocks)
 some end-user training (on the methodology)
 a very solid support (IT system & developers ready for helpdesk) to empower new users or applications

 When learning, the Devil is in the Details (a.k.a helpdesk hotline on speed dial = hours saved)

23



Thanks for your attention !

BACKUP SLIDES



Scaling an algorithm with LLC4320 grids

for item in time_series(1033):
for face in range(13):
for i in range(4320):
for j in range(4320):
result[face, i, j] = harmonic_analysis(
dataset[face, i, j, :],
f, v0u)

Volume to be processed: 2TB

Naive algorithm



Dask

def inc(x):
return x + 1

def double(x):
return x + 2

def add(x, y):
return x + y

>>> x = dask.delayed(inc)(1)
>>> y = dask.delayed(inc)(2)
>>> z = dask.delayed(add)(x, y)
>>> z.compute()
5
>>> z.vizualize()

To parallelize a code, a calculation graph is used.



Scaling the algorithm is automatic and simple 
with Dask



Zarr

def load_faces(face, chunks):
"""Load a face from the time series"""
ds=xarray.open_zarr(

"/work/ALT/swot/Eta.zarr/")
ds = ds.transpose("face", "j", "i", "time")
return ds.isel(face=face, j=chunks, i=chunks)["Eta"].data

%time ds = load_faces(0, slice(0, None))
# Wall time: 1.65 s

%time ds.mean().compute()
# Wall time: 6min 28s (vs 1h 21mins with netCDF)

• File format designed for distributed computing
• Zarr is an interesting alternative to NetCDF4 for internal storage.
• Pure solution with transparent key‐value storage.



Finally our algorithm becomes

for face in faces:
ds = load_faces(face, chunks=var_chunk)
ds = ds.rechunk(dask_array_rechunk(ds, 100))
future = dask.apply_along_axis(
tidal_constituents.WaveTable.harmonic_analysis,
2,
ds,
(f, v0u))

result = future.compute()
result = numpy.transpose(result, [2, 0, 1])
write_one_face(target, result, face, "Eta")



Interpolate LLC4320 grids

Type of numerical
grids

The earth is round!



Existing tools

• There are many grid interpolation libraries, but in general they are 
written entirely with the standard Python stack and are not very 
efficient: MetPy, Verde, pyresample, etc.

• The basic tools are from numpy, scipy: RegularGridInterpolator, 
cKDTree.

• But none of these tools manages the discontinuity of longitudes: 
transition around the Prime meridian.



A new library adapted to our problem.

0

2

4

6

8

10

12

14

16

18

137421 274063 549337 1096753 2192775 4388424 8778698 17559830

tim
e 
(s
ec
on

ds
)

Number of pixels

Time of tree build

kdtree

rtree

• The algorithm is based on a search tree, very efficient whatever the size of our problem.
• The missing coordinate on the right in the graphs below is the total number of pixels of the MIT/GCM grids

as the KDTree algorithm cannot handle it.



Finally, to interpolate the grid LLC4320

# Creating the tree.
lon, lat, eta = load()
interpolator = core.interp2d.Mesh()
x, y = np.meshgrid(lon, lat, indexing='ij')
interpolator.packing(x.flatten(), y.flatten(), eta.flatten())
# Creation of the grid to be produced.
lon = np.arange(‐180, 180, 1 / 3.0) + 1 / 3.0
lat = np.arange(‐90, 90, 1 / 3.0) + 1 / 3.0
x, y = np.meshgrid(lon, lat, indexing="ij")
# And finally we quickly interpolate: 15 seconds of calculation on a PC.
values, samples = interpolator.inverse_distance_weighting(
x.flatten(),
y.flatten(),
around=True,
radius=18000,
k=16,
num_threads=0)


