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Background and motivation

* Global- and basin-scale models with eddying resolution +
atmospheric forcing fields + tidal forcing are still relatively new.

* They are being used for many applications including planning for
SWOT and the velocity-measuring missions S-MODE/SKIM/WACM.

* In addition to US HYCOM + MITgcm simulations, there are now some
simulations of this type in France—North Atlantic 1/60° (Grenoble),
global 1/12° (Toulouse).

* Important to compare such models to observations.

* Will show some new comparisons here.



Models vs. mooring archive (Luecke et al., in

review)
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Compute frequency spectra of
temperature variance
and KE in:

--moorings

--1/12.5° + 1/25° HYCOM

, --1/12°+1/24° + 1/48° MITgcm
Geographical

distribution

Integrate across bands of interest:
--mesoscale
--subtidal
--diurnal
--near-inertial
--semidiurnal
Vertical --supertidal
distribution

Make scatterplots, compute
correlation coefficients and
other statistics



Models vs. mooring archive(Luecke et al., in
review)
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Models vs. AVISO (Luecke et al., in review)

Use AVISO to get more spatial coverage for a specific band (low-
frequency geostrophic flow).

HYCOM has higher spatial correlation but too much energy, relative to

AVISO.
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Globally averaged M, internal tide SSH amplitudes
(cm) in global hydrodynamical models and along-
track altimetry (Ansong et al., in preparation)

Ansong et al., paper
in preparation

Luke Kachelein’s PhD work:
Explains the roll-off of
stationary internal tide
with record length.

Go see his poster!
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Tidal forcing in MITgcm runs

* Overly large barotropic and internal tides are in part due
to lack of wave drag.

e But large errors in the barotropic tides also stem from the
astronomical forcing.

e The intent was to solve du/dt + ... = -V(n-niq-nSAL), with
the SAL term ng, approximated by 0.1121%n (scalar
apprOX|mat|on)S

* Instead they solved du/dt + ... =- V(n-1.1121*ngy)

* The astronomical forcing was too large by about 11% and
there was no SAL

e SAL omissions are known to cause large phase errors
(Hendershott 1972, Gordeev et al. 1977)



Preliminary comparison, surface kinetic energy, models vs. drifters
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Drifter data from the Global Drifter Program, hourly product of velocity and
position, reference Elipot et al. 2016, available at
http://www.aoml.noaa.gov/phod/gdp/hourly data.php

Results sent last night by
undergraduate summer intern
Jonathan Brasch

Builds upon in-press paper by Yu,
Ponte, Elipot, Menemenlis, Zaron,
Abernathy (thanks to all of them!),
which only included MITgcm.

Low/high frequency division seems
problematic to me. Also, HYCOM

time series is only 3 months and we’ve
only examined 1/9% of the points.

HYCOM closer than MITgcm to drifter
data in diurnal, semi-diurnal, and
near-inertial bands


http://www.aoml.noaa.gov/phod/gdp/hourly_data.php

Summary

Comparisons of global- and basin-scale HYCOM and MITgecm simulations with observations are
ongoing.

New global- and basin-scale NEMO simulations are also ready to be compared to
observations.

New comparisons shown here indicate that
 HYCOM has a higher spatial correlation with observations than MITgcm

 MITgcm, MOM®6, HYCOM, NEMO internal tides run without extra damping such as topographic wave
drag are larger than in altimetry; differences between “no wave drag” runs likely due to numerics

* Preliminary HYCOM comparison to surface drifters indicates closer agreement than MITgcm in high-
frequency bands

Nelson et al. HYCOM result, shown last year and also today by Julien and Ed:

* Models with concurrent atmospheric and tidal forcing can predict the geography of non-stationary
internal tides relatively well.

» Suggested grand challenge: test the ability of HYCOM/NEMO/MITgcm to accurately phase-predict non-
stationary internal tides?

Another suggestion often brought up: should the project invest in several moorings placed
around the global ocean to validate both empirical and hydrodynamic global internal
tide/wave models?




Winter 2019 Family Leave

Being a better,
more involved
uncle is a very
high priority for
me right now

Rowan’s
chess
! trophy

Horse-riding in Arizona
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More pros and cons of HYCOM

* Pros:
* tuned wave drag
» data assimilative-techniques acting on both eddies and tides

* Cons:
* IGW continuum spectrum too weak relative to observations and MITgcm
* numerical instability in high-latitude North Pacific



Semi-diurnal nonstationary variance fraction
(SNVF) in HYCOM vs. altimetry (Nelson et al., in
review)

Global Maps of SNVF
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AVAILABLE NOW

A new book from GODAE OceanView

New Frontiers
in Operational
Oceanography

Edited by Eric P. Chassignet
Ananda Pascual, Joaquin Tintoré,
and Jacques Verron

GODAE O Virw

The implementation of operational
oceanography in the past 15 years has
provided many societal benefits and has led
to many countries adopting a formal roadmap
tradition of two very successful intemational
summer schools held in France in 2004
(Chassignet and Vemom, 2006) and i
Australia in 2010 (Schiller and Brassington,
2011), a third intemmational school that
focused on frontier research in operational
oceanography was held in Majorca in 2017.
In the coming years, graduate students and
young scientists will be challenged by many
floats, etc) complex high-resolution
numerical models and data assimilation (high
changing computing platforms, etc.), and the
nedbmtkonmalysczls(opaoaan—

sdnolbmmugd\usemapmsud
young researchers (pre- and post-doctorate)
from across the world and exposed them to
the [atest research in oceanography.
specifically how it will impact operational
oceanography. This book is a compilation of
the lectures presented at the school and
presents a summary of the cument state-of-
the-art in operational oceanography research.

Available at www.godae-oceanview.org and amazon.com

CHAPTER 13

A Primer on Global Internal Tide and
Internal Gravity Wave Continuum
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Brief history of global- and basin-scale
internal tide and gravity wave models

e 2001, 2004: First basin- and global-scale internal tide models (Niwa and Hibiya
2001, Arbic et al. 2004, Simmons et al. 2004)
* No atmospheric forcing
* |dealized stratification

e 2010: First high-resolution model with concurrent tidal and atmospheric forcing
(HYCOM; Arbic et al. 2010)

* Allows for modeling of non-stationary internal tides (e.g., Shriver et al. 2014, Nelson et al. in
press, others)

* Allows for modeling of internal gravity wave (IGW) continuum spectrum (e.g., Muller et al.
2015, Savage et al. 2017a,b, others)

. %8%2) Run with higher vertical and horizontal resolution (MITgcm; Rocha et al.

* More developed IGW continuum (Savage et al. 2017b, more coming)

* New model runs in France: NEMO being run globally (1/12°; Toulouse) and over
North Atlantic (1/60°; Grenoble)




Motivation for global- / basin-scale internal
tide and gravity wave models

* Mixing
* Acoustics
e SWOT

* Internal tides and high-frequency IGW continuum spectrum have a significant
SSH signal at smallest scales to be measured by SWOT

* VVelocity missions (S-MODE, SKIM, WACM)

* Near-inertial motions also important



Model-data comparisons done thus far

* Important to know how “reasonable” these models are

* Comparisons have been done in about ~20 papers using HYCOM, a smaller
number of papers using MITgcm. Example (not exhaustive) comparisons include:
e SSH vs. tide gauges
e Barotropic tide SSH vs. altimeter-constrained models
* Internal tide SSH vs. along-track altimetry
* Tidal currents vs. historical mooring database

* IGW continuum KE and dynamic height variance spectra vs. historical and McLane profiler
moorings

* Wavenumber spectrum vs. shipboard along-track ACDP
* In-press, presented by Arin Nelson last year: Non-stationary internal tides vs. altimetry
 New: Surface kinetic energy vs. drifters




