(Sub)Mesoscale Transport in Idealized Southern Ocean Models

1-Courant Institute of Mathematical Sciences, NYU 2-Lamont Doherty Earth Observatory, Columbia University

Dhruv Balwada[1], Takaya Uchida[2], Shafer Smith[1], **Ryan Abernathey**[2]

- (Sub)mesoscale vertical fluxes [Balwada et al 2018]
- Seasonal iron fluxes in idealized Southern Ocean [Uchida et al 2019]
- Ongoing work [reconstructing vertical fluxes from SSH]
- (Reconstruction of full eddy flux tensor in 3D [Balwada et al 2019])

Outline

Experimental Setup

- MITgcm, 2000²km x 3km
 @ 50°S
- Channel with no-slip sides
- SST restored to linear T(y)
- No salinity, linear EOS
- LLC4320 vertical grid (76 levs)
- LLC4320 params
- Quadratic drag, Leith dissipation
- 150 year spin-up

Resolution: **20, 5, 1 km**. Tracer restored at surface.

.

Vertical fluxes with increasing resolution, but no seasonal variation

Flow characteristics

Vorticity/f

Tracer accumulation

$$\frac{\partial C}{\partial t} + \boldsymbol{u} \cdot \nabla C = \nabla \cdot (\kappa \nabla C) + \frac{\partial F_c}{\partial z}, \qquad -100$$

$$F_c(z=0) = k_i [C(z=0) - C_{atm}]$$
 $\hat{\Xi}^{-300}_{N-400}$

Cross-spectra of vertical velocity and tracer flux

Vertical fluxes with increasing resolution, with seasonality and a biogeochemistry model

Biomass & iron

- 2000²km x 3km @ 50^oS
- Focus on 2km resolution
- Seasonally-varying temperature restoring and windstress
- Simplified Darwin BGCM
- Nutrient forcing by restoration in sponge layer in northern 100km of domain
- Iron-limited throughout
- Basically, seasonal, and tracer forced from below instead of surface

Seasonal productivity & uptake

- Configured to represent the iron-limited ecosystem in the Southern Ocean. •
- A strong spring bloom around Oct.-Dec.
- Our interest is in quantifying the eddy transport of iron.

W_b : H.O. inversion [Giordani & Planton 2000 with some negl. terms]

Cross spectra

Total

Balanced

Unbalanced

Wavenumber [km⁻¹]

Strain-Vorticity

Full

Currently working on associating submesoscale features with fluxes

Ageostrophic

Vorticity

3D reconstruction of eddy flux tensor

Measuring eddy fluxes

Consider a modeled tracer c(x,y,z,t) advected by non-divergent flow v(x,y,z,t):

 $\partial_t c + \nabla \cdot (\mathbf{v}c) =$

Reynold's averaged equation is

$$\partial_t \overline{c} + \nabla \cdot (\overline{\mathbf{v}}\overline{c}) = -\nabla \cdot \mathbf{F}^c$$
 $\mathbf{F}^c = \overline{\mathbf{v}'c'}$ $\overline{()} = \overline{()} \text{ and } \overline{()'} = 0.$

Mean fields are resolved fields. Affected only by divergence of flux. Though eddy variance is affected by full flux:

$$\partial_t \left(\overline{\frac{c'^2}{2}} \right) + \nabla \cdot \left(\overline{\mathbf{v}} \frac{c'^2}{2} \right) = -\nabla \overline{c} \cdot \mathbf{F}^c$$

Parametrizations of divergent flux assume down-gradient diffusion. Full flux has rotational part:

 $\mathbf{F}^{\mathcal{C}} \equiv$

Connecting 'measured' flux to parameterization: remove rotational part? No unique solution

$$= 0, \quad \text{with} \quad \nabla \cdot \mathbf{v} = 0$$

$$\nabla \chi + \nabla imes \phi$$

Measuring eddy fluxes: Method of Multiple Tracers

N tracers $c_i(x,y,z,t)$, j = 1:N, each advected by non-divergent resolved flow:

 $\partial_t \overline{c}_j + \overline{\mathbf{v}} \cdot \nabla \overline{c}_j = -$

Measure fluxes & mean gradients => over-determined problem for **K**:

 $\mathbf{K} \nabla \overline{\epsilon}$

3 x 3 3 x

If non-parallel mean tracer gradients can be maintained, then least-squares provides an optimal solution (Plumb & Mahlman 1987; Bachman, Fox-Kemper & Bryan 2015).

N=10 tracers, run 50 years, restored to a **target fields**: RHS term $-\tau^1(c_j - c_j^*)$, $\tau = 6$ years

$$c_{1}^{*} = y/L \qquad c_{2}^{*} = -z/H \qquad c_{3}^{*} = \cos(2\pi x/L) \qquad c_{4}^{*} = \sin(2\pi x/L) \qquad c_{5}^{*} = \sin(4\pi x/L) c_{6}^{*} = \sin(\pi y/L) \qquad c_{7}^{*} = \cos(2\pi y/L) \qquad c_{8}^{*} = \sin(2\pi y/L) \qquad c_{9}^{*} = \cos(\pi z/H) \qquad c_{10}^{*} = \sin(\pi z/H)$$

Average: Full time average + lateral spatial coarse-graining over 50km boxes.

$$-\nabla \cdot (\overline{\mathbf{v}'c'_j}) \equiv \nabla \cdot (\mathbf{K}\nabla \overline{c}_j)$$

$$\overline{c}_j = -\overline{\mathbf{v}'c'_j}$$

Can measured K reconstruct fluxes?

Consider c_3 and c_1 : target fields have x and y gradients, resp. Mean gradients are retained (col 2). Eddy fluxes in dominant gradient directions (col 3) are well-reconstructed by K (col 4). [z = 1500m]

2e-03

· 2e-03

- 1e-03

· 5e-04

- 0e+00

-5e-04

-1e-03

-2e-03

-2e-03

Harder test: Can K reconstruct buoyancy flux?

T-fluxes at z = -1500m

T-fluxes at y = 1000 km

But ... is it *really* good enough?

Flux reconstruction error: For each tracer c_j , and buoyancy (temperature T), flux error is computed at each point in domain as:

E(Flux) = |Flux - Flux_{recon}|/|Flux|

What do diffusivities look like?

K_{gm}

Check whether PV flux mostly due to buoyancy flux...

Check whether predicted dynamical connection holds

Breadcrumb trail

- Need eddy fluxes to get oxygen (& other climate tracers) right
- Parameterized climate models with $\kappa_{redi} = \kappa_{gm}$ have κ_{redi} too small
- Tuning GCM to get stratification right requires $\kappa_{gm} \sim 500 \text{ m/s}^2$
- Tracer diffusivity estimates from models and obs: $K_{redi} \sim 5000 \text{ m/s}^2$
- Model and obs: Both diffusivities strongly depth-dependent
- From above, $\kappa_{\mathrm{redi}} \partial_z s \approx \partial_z \left(\kappa_{\mathrm{gm}} s\right)$ and $\kappa_{\mathrm{redi}} \approx \kappa_q$
- >> Set κ_{redi} via theory for QGPV flux, and integrate to get κ_{gm}

$$\kappa_{\rm gm}(z) \boldsymbol{s}(z) = \kappa_{\rm gm}(0) \boldsymbol{s}(0) - \int_{z}^{0} \kappa_{\rm redi}(z') \partial_{z} \boldsymbol{s} \, dz'$$