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Deterministic Nonperiodic Flow!

Epwarp N. Lorenz

Massachusetts Institute of Technology
(M: ipt received 18 ber 1962, in revised fornlll January 1963)

AsmsTRACT

Finite systems o{ istic ordinary’ may be dslgned to represent
orced d flow. ions of these ions can be id with in
phase space. For ﬂmse systems with bounded solutions, it is found that iodic solutions are
\mswble with respect to small modifications, so that slightly differing initial 'states can evolve into uma:dzr-
ably different states. Systems with bounded solutions are shown to possess bounded numerical solutions.
A simple system representing cellular convection is solved numerically. All of the solutions are found

to be unstable, and almost all of them are nony

1. Introduction

Certain hydrodynamical systems exhibit steady-state
flow patterns, while others oscillate in a regular penodm
fashion. Still others vary in an irregular,

periodic.
The feasibility of very-long-range weather prediction is examined in the light of these results.

Thus there are occasions when more than the statistics
of irregular flow are of very real concern.

In this study we shall work with systems of deter-
mmlsuc squatmns which are idealizations of hydro-

haphazard manner, and, even when observed for 1ong
periods of time, do not appear to repeat their previous
history.

These modes of behavior may all be observed in the
familiar rotating-basin experiments, described by Fultz,
et al. (1959) and Hide (1958). In these experiments, a
cylindrical vessel containing water is rotated about its
axis, and is heated near its rim and cooled near its center
in a steady symmetrical fashion. Under certain condi-
tions the resulting flow is as symmetric and steady as the
heating which gives rise to it. Under different conditions
a system of regularly spaced waves develops, and pro-
gresses at a uniform speed without changing its shape.

y . We shall be interested principally in
nunpenodm soluuons, i.e,, solutions which never repeat
their past history exactly, and where all approximate
repetitions are of finite duration. Thus we shall be in-
volved with the ultimate behavior of the solutions, as
opposed to the transient behavior associated with
arbitrary initial conditions,

A closed hydrodynamical system of finite mass may
ibly be treated matt lly as a finite collec-

tion of molecules—usually a very large finite collection
—in which case the governing laws are expressible as a
Bnite set of ordinary differential equations, These equa-
tmns are generally highly intractable, and the set of

Under still different conditions an irregular flow pattern
forms, and moves and changes its shape in an irregular
nonperiodic mannes
Lack of periodicity is
tems, and is one ¢

tistics of turbule
turbulence

oite

terns.

1 The rmn:h reported in this work has been sponsored by the
Gaoph Research Directorate of the Air Force Cambridge
C:nler, under Contract No. AF 19(604)-4969.

les is usually app ted by a continuous dis-
tribution of mass, The governing laws are then expressed
asa set of pnrual differential equaunns, containing such

by a new

perhaps be the
velues of the continuous vanables at a chosen grid of
points, or the coefficients in the expansions of these
variables in series of orthogonal functions, The govern-
ing laws then become a finite set of ordinary differential
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Figure 2: The architecture of VGG16 model . -
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Learning-based «Noise» removal _ R apshos (here,
Laplacian of SSH fields, Osmosis region)

« Denoised » tide-
HR snapshots free output
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Numerical integration schemes as ResNets [ et 2015]
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Learning-based
Currents [Fablet et al,, 201] .
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Learning latent dynami
observed systems [o ala et
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Bridging ocean science &.. DL/ML: Data
challenges as a key instrument 2 '

Shared benchmarking datasets/platforms to accelerate
ML/DL breakthroughs

: : : Open (training)
Benchmarking expriments for image
cpe as dataset
classification models on open dataset

152 layers = +
Evaluation framework
‘ 2leyers || 191a y s I I +

i | slirs s.i .hnow. Data challenge workshop
/platform

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10

ResNet GoogleNet VGG AlexNet
ImageNet Classification top-5 error (%) uegl COd d Ia b; ram pl ka gg I ey

- Relevant for ocean/swot challenges ?
| Means to draw data scientists’ interest ?




Thankyou

Lopez Radcenco et al., Analog Data Assimilation of Along-Track Nadir and
Wide-Swath SWOT Altimetry Observations in the Western Mediterranean
Sea. IEEE JSTARS, 2019.

Ouala et al. Neural Network Based Kalman Filters for the Spatio-Temporal
Interpolation of Satellite-Derived Sea Surface Temperature. RS, 2018.

2 ouala et al., Learning Latent Dynamics for Partially Observed Systems.

Preprint, 2019.

: More at https //www researchgate net/proflle/Ronan Fablet
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The example of analog methods. Nothing new?
B s e A Y

Recent revival and extension of analog
 Downscaling, forecasting (eg, shenk & Zorita, 2012)
* Analog data assimilation (Lguensat et al., 2017)
e Extension to geophysical fields (rablet et al., 2017)
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Deep learning models
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PDE/ODE R NN representation
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Numerical integration schemes as ResNets [ et 2015]
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Identification of
governing equations

Computationally-efficient
models

Improved forecasting &
reconstruction

Autonomous/adaptive
observing systems

identification of nonlinear dynamical systems

Steven L. Brunton™', Joshua L. Proctor®, and J. Nathan Kutz®

| Discovering governing equations from data by sparse
<

mmmmmmm ington, Seattle, WA 98195; “Institute for Disease Modeling, Bellevue, WA 98005;

< in
(™ hington, Seatle, W 98195

74 i on, N, and appraved M 16 (received for review August 31, 2015)

= Extracting goveming eq rom data is a central challenge in dyn mlml systems from data. However, symbal regression
B ey mrsqamasnlﬂmm engineering. Data are abundant _ cxpensive, docs not scale we.lllnlgesys  of interest, a
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11, Sparse Regression to Solve for Active Terms in the Dynamics

Deep learning to represent subgrid processes in
climate models

Stephan Rasp*®', Michael §. Pritchard®, and Pierre Gentine®?

PNAS |
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— Training data

= AF (State-of-the-art)
Proposed RINN4-EM model

—— Proposed VBRNN model
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What S needed /expected ?
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Panel session «JT IA OAC, Qﬁlﬂiizﬂlﬁ
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Supporting the emergence of a sc:entlflc community
Applled Math. - Data Science - OA Science

 Workshops, Data challenges, ... (e.g., Al4GeoDyn)

e Joint projects (e.g., LEFE-MANU IA-OAC, ANR MeLODY)

Computational resources and data management issues
 GPUs with data storage (e.g., Azure/Google, Jean Zay,...)
* Hosting reference datasets/data challenges

Supporting training initiatives
* Training course (e.g., Data Science for Geoscience)

 PhD/postdoc programs
[l
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Learning-based Downscall
Currents [Frablet et al. 2019]

HR reference
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