

Using SWOT to Advance Water Management for Better Ecosystem services from Hydropower Dam Operations

Matthew Bonnema (bonnema@uw.edu) and Faisal Hossain University of Washington

Objectives

- Evaluate accuracy of simulated SWOT observations of reservoir storage change for 20 reservoirs in the Mekong River Basin
- Merge SWOT water quantity observations with water temperature observations from other sensors to understand and manage ecosystem impacts downstream of hydropower dams

Accuracy of Synthetic SWOT Observations

SWOT Reservoir Observations in the Context of Current Satellite Sensors

References

Bonnema, M., and F. Hossain (2017), Inferring reservoir operating patterns across the Mekong Basin using only space observations, *Water Resour. Res.*, 53, (doi:10.1002/2016/WR019978).

Sonnema, M., and F. Hossain (2019). Assessing the potential of the Surface Water and Ocean Topography mission for reservoir monitoring in the Mekong River Basin. Water Resour. Res., 55

Acknowledgements

Work supported by NASA SWOT (Physically Oceanography), NASA Earth and Space Science Fellowship (NESSF) and NASA Water Applied Science Programs.

Satellite Based River Temperature Observations

Overview

- Water quantity observations from SWOT and other sensors can be complemented by satellite based water quality observations such as river surface temperature
- Landsat thermal imagery used to infer impacts of hydropower dams on rivers downstream in Mekong River Basin
- Pair thermal information with remotely sensed operations of upstream reservoirs
- Test of water temperature observations in Mekong tributary, 3S Basin, location of major dam development in recent decades

River Temperature from Landsat Thermal Imagery

Conclusions

- 1. Overall, storage change of the 20 Mekong Basin reservoirs was accurately estimated from the simulated SWOT observations
- 2. SWOT represents a dramatic improvement in reservoir storage change estimation over current methods
- The impacts of dams on downstream river temperature can be detected by Landsat thermal imagery
- By combining remotely sensed thermal observations with remotely sensed reservoir operations, we can understand and manage better the ecosystem impacts downstream from hydropower operations